MANUALE DELL'INNOVAZIONE E DELLE ATTIVITÀ SVOLTE

P.S.R. Sicilia 2014/2020 Sottomisura 16.2 "Sostegno a progetti pilota e allo sviluppo di nuovi prodotti, pratiche, processi e tecnologie"

MESSA À PUNTO E IMPIEGO DELLA DISINFESTAZIONE BIOLOGICA DEL TERRENO PER LA GESTIONE ECOSOSTENIBILE DEI PATOGENI TELLURICI DEL POMODORO

A Giorgio Gurrieri, come il vento tra gli alberi: invisibile, ma sempre presente.

Programma di Sviluppo Rurale Sicilia 2014-2020

SOTTOMISURA 16.2
"Sostegno a progetti pilota e allo sviluppo di nuovi prodotti,
pratiche, processi e tecnologie"

Titolo del progetto

"Messa a punto e impiego della disinfestazione biologica del terreno per la gestione ecosostenibile dei patogeni tellurici del pomodoro"

Acronimo

MAPEI-ASD

MANUALE DELL'INNOVAZIONE E DELLE ATTIVITÀ SVOLTE

Sommario

1	PR	REMESSA	4
2	IN ¹	TRODUZIONE	4
3	AN	IALISI DI CONTESTO E OBIETTIVI DEL "PROGETTO PILOTA"	7
4		NALITÀ DEL PROGETTO	
5	AT	TIVITÀ SVOLTE E RISULTATI OTTENUTI	9
	5.1	ATTIVITÀ DI COORDINAMENTO ED ELABORAZIONE DEI DATI DI CAMPO E LABORATORIO	a
	5. <i>1</i>	ATTIVITÀ SVOLTE PRESSO IL PARTNER 'F.LLI LICITRA'	
	5.Z 5.3	ATTIVITÀ SVOLTE PRESSO IL PARTNER 'IL POMO D'ORO'	
	5.4	ATTIVITÀ SVOLTE PRESSO IL PARTNER 'ORTOMONCADA'	
	5.5	ATTIVITÀ SVOLTE PRESSO IL PARTNER 'PELLEGRINO IGNAZIO'	
	5.6	Attività svolte presso il partner 'I 2 Carrubi'	
	5.7	Attività svolte presso il partner 'Società Agricola TO.FI. SS'	
	5.8	ATTIVITÀ SVOLTE PRESSO I PARTNER 'OP MONCADA, COLLE D'ORO BIO, MALLIA EMANUELE'	
_			
6	LE	ANALISI DEL MICROBIOMA	38
	6.7	LA DISINFESTAZIONE ANAEROBICA DEL SUOLO E IL MICROBIOMA	38
	6.2	L'APPROCCIO ALLO STUDIO DEL MICROBIOMA NEL PROGETTO	39
	6.3	METODOLOGIA: CARATTERISTICHE E ORIGINE DEI CAMPIONI DI SUOLO	39
	6.4	METODOLOGIA: PREPARAZIONE DEL CAMPIONE E ESTRAZIONE DEL DNA MICROBICO	40
	6.5	METODOLOGIA: ANALISI DEL MICROBIOMA E ANALISI BIOINFORMATICA	40
	6.6	RISULTATI	41
	6.7	Risultati: Analisi bioinformatiche, dal denoising sulle sequenze grezze all'otten	
		DELLE ASV TABLE	42
	6.8	RISULTATI: STUDIO DELLA DIVERSITÀ INTERNA DEI CAMPIONI (ALFA-DIVERSITÀ) E DELLA SIMILA	RITÀ TRA
		CAMPIONI DELLE DIVERSE TESI ALLO STUDIO (BETA-DIVERSITÀ)	42
	6.9	RISULTATI: ANALISI DELLA COMPOSIZIONE MICROBICA: STUDIO DELL'ABBONDANZA RELATIVA	A DELLE
		COMUNITÀ BATTERICHE E FUNGINE NEI DUE ANNI DI SPERIMENTAZIONE	46
	6.10	RISULTATI: STUDIO DELL'ABBONDANZA DIFFERENZIALE DELLE COMUNITÀ BATTERICHE	49
	6.11	CONSIDERAZIONI RISULTATI ANALISI DEL MICROBIOMA	53
7	SV	ILUPPO DI UN PROTOCOLLO PER VALORIZZARE LA BIODIVERSITÀ	54
8	DI	VULGAZIONE DEI RISULTATI	55
0	CC	NICHISIONI E DOCEDETTIVE ELITHDE	50

Redatto da:

- Prof. Giancarlo Polizzi Università degli studi di Catania (Di3A);
- Dott. Agr.mo Rodolfo Occhipinti SATA srl.;
- Dott. Agr.mo Gaetano Alessandro Guarino STUDIO PROSEA.

1 Premessa

Il presente *manuale dell'innovazione e delle attività svolte* viene redatto al fine di esporre e diffondere i risultati delle innovazioni collaudate nell'ambito del progetto proposto e condotto dal Gruppo Operativo "BIOPATHOGENS MANAGEMENT" (acronimo MAPEI-ASD) nell'ambito del progetto denominato "MESSA A PUNTO E IMPIEGO DELLA DISINFESTAZIONE BIOLOGICA DEL TERRENO PER LA GESTIONE ECOSOSTENIBILE DEI PATOGENI TELLURICI DEL POMODORO", finanziato ai sensi della sottomisura 16.2 del PSR con D.D.S N. 5570/2022 DEL 06/12/2022 (CUP G97F22000020006).

Il progetto pilota è nato dall'esigenza comune di alcune aziende orticole ricadenti nella fascia trasformata della provincia di Ragusa di riuscire a contenere le problematiche telluriche dei suoli e la gestione delle piante a fine ciclo colturale.

Negli ultimi anni, l'attenzione verso pratiche agricole sostenibili e a basso impatto ambientale è cresciuta in risposta alle pressioni normative e all'aumentata consapevolezza dei rischi legati all'uso di fumiganti chimici. Le politiche ambientali attuali impongono restrizioni sempre più severe sull'impiego di composti potenzialmente inquinanti, spingendo il settore agricolo a ricercare soluzioni alternative ed ecocompatibili. In questo contesto si inserisce la proposta di adottare la disinfestazione anaerobica del suolo (ASD), una tecnica innovativa già sperimentata con successo a livello internazionale, ma ancora inesplorata in Italia. Il seguente documento illustra le potenzialità dell'ASD come valida alternativa alla fumigazione chimica, con particolare riferimento alla sua applicazione nelle colture protette di pomodoro in Sicilia, evidenziando benefici agronomici, economici e ambientali.

2 Introduzione

L'attività progettuale è stata realizzata con il coinvolgimento, nelle varie fasi progettuali e a vario titolo dei 14 partner del Gruppo Operativo denominato "BIO PATHOGENS MANAGEMENT," che si elencano di seguito:

- SATA SRL (capofila)
- Società Agricola Ortomoncada Società Semplice di Moncada Rosario & C
- Associazione tra produttori Il Vivaio
- Econatura Group Società Agricola Consortile a RL
- Colle D'oro Bio Società Semplice Agricola
- Società Agricola F.lli Licitra SRL
- Mallia Emanuele
- Azienda Agricola II Pomo D'oro di Cettina e Rossana Cannata SS
- Società Agricola To.Fi SS
- Moncada Società Agricola Cooperativa
- I Due Carrubi
- PRO.SE.A. SRL
- Analisi Chimiche Lab Center Sicilia SRLS
- Università di Catania, Di3A

Il progetto è stato articolato in azioni ed ha visto il coinvolgimento delle seguenti figure:

N. AZIONE	DESCRIZIONE	ATTIVITA' DI COORDINAMENTO
1	Le attività preliminari hanno riguardato: • 1.a – Analisi delle criticità delle aziende orticolo-vivaistiche siciliane. • 1.b – Ricerca di soluzioni innovative per affrontare tali problematiche. Entrambe le attività sono state svolte tramite incontri con l'Università di Catania, produttori, consulenti e stakeholder del settore. Questi studi hanno permesso l'avvio e la definizione del progetto esecutivo.	Università di Catania
2	 Animazione del territorio L'azione ha previsto attività di coinvolgimento e sensibilizzazione attraverso: 2.a - Incontri informativi con imprese agricole, stakeholder e servizi fitosanitari per aumentare la consapevolezza sulle problematiche del settore. 2.b - Confronti con potenziali partner per valutare la fattibilità e l'adattabilità delle innovazioni proposte alle diverse aziende. È stata inclusa anche un'attività di coordinamento, monitoraggio e gestione del progetto. 	Università di Catania SATA SRL
3	L'attività consiste nell'elaborazione del progetto esecutivo attraverso: • 3.a – Pianificazione operativa: definizione delle azioni e dei siti sperimentali, individuazione delle criticità, effettuata tramite incontri e sopralluoghi con partner e consulenti. • 3.b – Selezione del personale: scelta di consulenti, operatori interni e servizi esterni basata su esperienza, competenze e affidabilità. • 3.c – Raccolta dati: acquisizione delle informazioni necessarie al monitoraggio e alla valutazione del progetto, con il coinvolgimento di tutti i partner. • 3.d – Disciplinare di produzione: sviluppo di un protocollo per valorizzare la biodiversità tramite la tecnica ASD e metodi biologici, finalizzato a ottenere produzioni sostenibili e senza fumiganti.	Università di Catania SATA SRL
4	Prevede attività coordinate per attuare e monitorare il progetto, con coinvolgimento di università, partner e consulenti.	PRO.SE.A. SRL SATA SRL

•	4.a - Coordinamento e gestione: affidata					
	al c	oordinatore	in	collaborazione	con	i
soggetti coinvolti.						

- 4.b Formazione del personale: rivolta sia a consulenti sia al personale delle aziende partecipanti.
- 4.c Valorizzazione degli scarti agricoli:
 - 4.c.1: Uso diretto di residui di piante di pomodoro in campo per disinfestazione biologica, con confronto tra trattamento biologico e standard chimico.
 - 4.c.2: Produzione di compost con residui vegetali, usato poi per disinfestazione anaerobica dei suoli.
- 4.d Confronto tra metodi: confronto tra disinfestazione biologica (usando compost) e fumigazione con Metam-sodio. In alcune aziende si valuta anche l'effetto dell'innesto su ibrido.
- 4.e Bioprotezione delle piante: uso di microrganismi benefici dalla fase vivaistica al trapianto e durante la coltivazione, con controlli di efficacia e monitoraggio microbiologico.
- 4.f Analisi di laboratorio: studio di patogeni del pomodoro e analisi su suoli, piante e compost.

5 Disseminazione e trasferimento dei risultati

L'azione prevede la diffusione dei risultati del progetto attraverso due principali modalità:

- 5.a Attività sul territorio e media tradizionali: campi dimostrativi, giornate di campagna, seminari, materiale divulgativo, manuale dell'innovazione, pubblicità su TV e riviste specializzate.
- 5.b Comunicazione digitale: creazione di un portale web e gestione dei canali social per promuovere le attività e i risultati del progetto.

PRO.SE.A. SRL

Hanno fatto parte del gruppo di lavoro, oltre ai citati coordinatori, diversi altri tecnici ausiliari e aziendali.

Responsabile scientifico del progetto è stato il **Prof. Giancarlo Polizzi** dell'Università degli studi di Catania (Di3A) coadiuvato dalla Prof.ssa Vittoria Catara.

3 Analisi di contesto e obiettivi del "progetto pilota"

L'orticoltura intensiva rappresenta in Sicilia un importante comparto produttivo, ed è prevalentemente concentrata nella zona costiera del versante sud -orientale ("fascia trasformata ragusana") dove insistono circa 4.000 ha di apprestamenti protetti che intercettano rispettivamente circa il 25% e il 20% della superficie e produzione nazionale. La coltura del pomodoro è la più diffusa di tutto il comparto. Se da un lato l'ambiente protetto consente di estendere il calendario di commercializzazione delle produzioni e di proteggere le colture da avverse condizioni climatiche, dall'altro contribuisce ad accentuare alcune problematiche fitopatologiche. Le tecniche colturali che si attuano in ambiente protetto, infatti, esercitano una forte pressione selettiva e negativa sulla microflora del terreno. La successione monoculturale, l'adozione delle stesse cultivar, i cicli colturali reiterati, le concimazioni spinte e la mancata eliminazione dei residui colturali, possono determinare un incremento sensibile della carica di inoculo dei patogeni tellurici, con danni considerevoli alle colture e ripercussioni sulle produzioni sia sotto il profilo quantitativo che qualitativo. Tutto ciò obbliga i produttori a mettere in atto delle strategie di lotta atte ad ostacolare l'epidemiologia di tali patogeni tellurici, quindi, di influenzare la dinamica e l'entità delle infezioni nel tempo e nello spazio. La scelta di adeguati interventi di lotta non è facile e a complicarla si aggiunge la scarsa visibilità tipica dei patogeni terricoli che ostacola l'esatta individuazione dell'origine del danno. I fattori che influenzano le misure di intervento più idonee sono molteplici quali le modalità di sopravvivenza dei funghi nel suolo. Diverso è l'approccio alla problematica a seconda che si tratti di patogeni appartenenti al gruppo dei funghi "invasori del suolo", e più nel dettaglio ai funghi "colonizzanti la rizosfera", o che si parli di patogeni afferenti al gruppo dei funghi "abitatori del suolo", che hanno una spiccata abilità nel sopravvivere a lungo nel suolo come saprofiti. Caratteristica, quest'ultima, solo di alcuni funghi tellurici (Rhizoctonia spp., Fusarium solani, F. roseum, Sclerotium spp.) che sembra, peraltro, essere incompatibile con un elevato livello di specializzazione parassitaria, tanto che la maggior parte dei soilborne sono racchiusi nella categoria dei "funghi colonizzanti la rizosfera", quindi dei "funghi invasori". Altro fattore determinante per la gestione fitoiatrica è capire se si tratta di patogeni specie-specifici (es. forme speciali di F. oxysporum), polifagi, ma con ceppi (patotipi) a spettro relativamente ridotto (es. R. solani) o, polifagi veri e propri (Sclerotinia sclerotiorum). Per lo sviluppo di un'idonea strategia di lotta occorrono buone conoscenze sull'attività patogena dei funghi tellurici e sull'influenza esercitata sulla stessa dai fattori fisico-ambientali agenti nel "sistema suolo". Numerosissimi sono i funghi terricoli responsabili di malattie in ambiente protetto in Sicilia. Tra essi ricordiamo Verticillium dahliae, che causa gravi danni prevalentemente su melanzana; S. sclerotiorum e S. minor, che determinano marciumi prevalentemente su lattuga e cucurbitacee; i Fusaria, "patogeni chiave" per solanacee (pomodoro, melanzana e peperone) e cucurbitacee (es. melone), in grado di compromettere le produzioni; R. solani, responsabile di morie di semenzali e di giovani piante; Pyrenochaeta lycopersici, agente causale della suberosi radicale del pomodoro; Pythia e Phytophthorae responsabili rispettivamente di morie dei semenzali e di gravi alterazioni a carico dell'apparato radicale. Nella fase iniziale dell'era post bromuro la scelta degli agricoltori è ricaduta sui fumiganti Metam-sodio e dazomet, fumiganti precursori dell'isotiocianato di metile con azione anticrittogamica, nematocida, diserbante e insetticida, impiegati singolarmente o in abbinamento a nematocidi. A tutt'oggi l'applicazione di

tali fumiganti interessa oltre il 50% della superficie destinata a produzioni orticole annualmente disinfestata. L'adozione dei fumiganti è una pratica poco sostenibile dal punto di vista ambientale per il possibile inquinamento delle falde, dei corsi d'acqua e per l'inquinamento dell'aria in seguito alle immissioni del gas nell'atmosfera. In tale ottica, l'opportunità/sfida del comprensorio più rappresentativo dell'orticoltura protetta in Italia consiste nel promuovere una significativa evoluzione tecnologica ecosostenibile nella difesa delle produzioni orticole che sia in grado di preservare e migliorare la qualità del suolo, di tutelare le risorse idriche superficiali e sotterranee, di ottenere un prodotto più salubre che dia una connotazione qualitativa alle produzioni di tale territorio ed al tempo stesso di garantire un maggiore reddito aziendale per i produttori agricoli.

4 Finalità del progetto

Gli attuali indirizzi di politica ambientale sono diretti verso restrizioni sempre più ampie in termini di utilizzo, ri-registrazione e/o registrazione dei fumiganti. È il caso per l'appunto del tanto discusso metilisotiocianato, potenziale inquinante del suolo e delle falde acquifere, che l'EPA (Environmental Protection Agency) ha classificato come probabile prodotto cancerogeno includendolo nella lista dei composti chimici dannosi. In base a quanto detto la recente legislazione Europea sull'uso sostenibile dei prodotti fitosanitari suggerisce pertanto di ricorrere, laddove possibile, all'adozione di strategie di lotta alternative al mezzo chimico.

La disinfestazione anaerobica del suolo (ASD), conosciuta anche come "disinfestazione biologica del terreno" è una recente tecnica di disinfestazione del terreno in pre-trapianto mediata microbiologicamente, alternativa alla fumigazione del terreno, in grado di contenere efficacemente numerosi patogeni tellurici, nematodi parassiti delle piante ed erbe infestanti su numerose colture. ASD non è stata oggetto di alcuna sperimentazione in Italia. A livello mondiale essa è stata inizialmente impiegata in Giappone e in Olanda su diverse colture in pieno campo e colture protette e, successivamente, ha stimolato l'interesse di numerosi ricercatori che ne hanno proposto l'adozione in USA, Cina e altri paesi. I complessi di malattia del terreno sono problematiche emergenti nelle colture protette di pomodoro in Sicilia che necessitano di interventi di lotta. Le malattie in questi complessi includono la suberosi radicale (Pyrenochaeta lycopersici), il marciume bruno delle radici (Colletotrichum coccodes), la verticilliosi (Verticillium dahliae), il marciume del colletto e delle radici (Fusarium oxysporum f. sp. radicis-lycopersici), le galle radicicole (Meloidogyne spp.), gli imbrunimenti vascolari e la necrosi del midollo (Pseudomonas spp., Xanthomonas perforans). Nei confronti di alcuni di questi complessi di malattia è stato recentemente accertato negli Stati Uniti che la disinfestazione anaerobica potrebbe essere uno strumento efficace di lotta in quanto consente, in rapporto alla diversa sorgente carbonica impiegata, una modifica della componente microbica del terreno ed una efficacia del trattamento. La composizione della componente microbica che si seleziona in seguito al trattamento ASD è sorgente carbonica dipendente e l'efficacia, nei confronti dei diversi agenti patogeni, varia in rapporto al tipo di ammendante utilizzato. Come nel caso della solarizzazione l'efficacia del trattamento ASD è tempo-temperatura dipendente.

L'innovativa attività progettuale abbina la possibilità di risolvere l'annosa problematica dei patogeni tellurici (soilborne), manifestata a gran voce dagli imprenditori agricoli della zona in occasione dei numerosi tavoli tecnici e di dibattito tenuti negli ultimi anni con il vantaggio di

poter migliorare la fertilità del suolo e smaltire in modo eco-compatibile le biomasse di scarto prodotte in azienda, le quali vengono ordinariamente bruciate con conseguente immissione di CO2 in atmosfera.

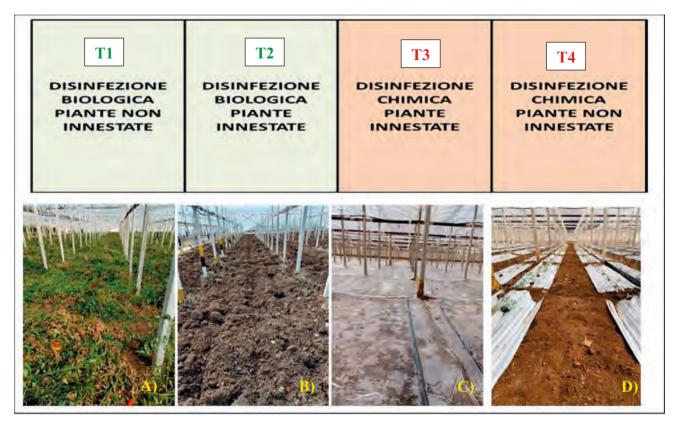
La finalità del progetto di ricerca è stata quella di inserire tra le pratiche colturali l'impiego della disinfestazione biologica del terreno nelle colture protette di pomodoro in Sicilia e di mettere a punto la modalità con la quale sarà possibile ottenere i migliori risultati dal trattamento anche nell'ottica di risultati a medio e lungo termine che si possono realizzare solo con il decremento della popolazione patogena e attraverso la modifica della relazioni ecologiche e antagoniste della componente microbica presente nel terreno. L'attività progettuale soddisfa simultaneamente i fabbisogni di un territorio fortemente depauperato che richiede una gestione più rispettosa della microflora benefica del suolo e la necessità di adottare una tecnica sostenibile dal punto di vista ambientale che consenta la bioprotezione delle colture dai parassiti tellurici delle ortive. L'innovazione (ASD) potrà garantire un maggiore reddito per gli agricoltori sia per la capacità di ridurre al minimo le ingenti perdite di produzione legate agli attacchi dei patogeni terricoli sia per l'eliminazione delle spese relative all'acquisto dei fumiganti e sia per l'ottenimento di un prodotto a residuo chimico basso o trascurabile. Per il primo parametro (danni da parassiti tellurici) si possono chiaramente ipotizzare indicatori di riduzione delle perdite di produzione da parassiti tellurici che si attestano dal -15 al -56% nel caso di infestazioni da nematodi e dal -50 al -94% nel caso di attacchi di oomiceti e funghi (Shrestha et al. 2016). Per la voce relativa all'uso dei fumiganti si può realisticamente prevedere una riduzione dell'utilizzo del 100% (si pensi a quantitativi fino ad un massimo di 40.000 hl di Metam- sodio e 2.800 t di dazomet non più immessi nell'agroecosistema per la sola fascia trasformata ragusana in un anno!). Agli indiscussi benefici di natura ambientale (es. sanità dei suoli, inquinamento falde acquifere, ecc.) e sociale (rischi per gli operatori e consumatori) si aggiunge il vantaggio per gli agricoltori di un risparmio per le spese relative all'acquisto dei fumiganti quantificabile con un indicatore di circa 1.000€/1000 m2 per anno. È inoltre concretamente preventivabile un incremento del 20% del valore commerciale del prodotto fumigant-free (es. pomodoro).

5 Attività svolte e risultati ottenuti

5.1 Attività di coordinamento ed elaborazione dei dati di campo e laboratorio

Il Di3A, in collaborazione con il gruppo di lavoro, ha effettuato costantemente un lavoro di coordinamento delle attività scientifiche svolte presso i *partner* del progetto, attraverso sopralluoghi, comunicazioni telematiche ed altro. Durante le attività sono stati raccolti dati e campioni per indagini analitiche di laboratorio (Figura 1), è stata predisposta una loro prima elaborazione da cui è stato possibile redigere la presente relazione.

Figura 1: campionamento in campo di suolo e radici


5.2 Attività svolte presso il partner 'F.lli Licitra'

Nell'ambito dell'azione 4.c.1. 'Impiego di residui di piante di pomodoro tal quali', è stato predisposto un disegno dimostrativo in coltura protetta presso il *partner* 'F.lli Licitra', la serra ricadente in c.da Baccanisi comune di Santa Croce Camerina (RG) costituita da paletti in cemento e legno oggetto della sperimentazione è stata divisa in quattro parcelloni di cui uno (T1) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante non innestate, uno (T2) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante innestate, uno (T3) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodio (prodotto commerciale utilizzato Fumathame 510) e impiego di piante innestate e uno (T4) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodio (prodotto commerciale utilizzato Fumathame 510) e impiego di piante non innestate.

Le attività preliminari al trapianto hanno riguardato un rilievo della coltura a fine ciclo per valutare il grado di presenza di sintomatologie telluriche (malattie e nematodi) presenti sulle piante del trapianto precedente dal quale non sono emerse particolari problematiche. Le piante sono state estirpate in data 10/06/2023 lasciate essiccare per trenta giorni al sole e successivamente triturate e interrate con frutti di pomodoro. La copertura del suolo è stata effettuata in data 10/07/2025

utilizzando film plastici impermeabili all'ossigeno in PE preoccupandosi subito di portare il terreno a saturazione di acqua tramite irrigazione per eliminare la presenza di ossigeno creando condizioni di aerobiosi ostili a diverse avversità telluriche mentre il trattamento chimico con il Metam-sodio e stato eseguito in data 24/08/2023 (Figura 2).

Figura 2: disegno sperimentale e fasi attuazione protocollo sperimentale. - A) Estirpo piante. - B) Interramento piante e frutti pomodoro. - C) Copertura parcelle per trattamento ASDE e MS – D) Trapianto

Il trapianto è stato effettuato in data 28/09/2023 con piantine di pomodoro ciliegino varietà Creativo (Clause) fornite dal *partner* Il Vivaio, in parte innestate su portainnesto Optifort allevate a due branche, la superficie dei singoli parcelloni era di 500 m² contenenti 1.000 piante nei parcelloni innestati e 1.200 piante in quelli non innestati.

Tutte le piantine in vivaio sono state sottoposte a bioprotezione con trattamento alla semina con una formulazione liquida di *Bacillus amyloliquefaciens* ceppo D747 (prodotto commerciale AMILO-X LC) alla dose di 3 L/ha e un trattamento in accrescimento con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1 L/ha, successivamente al trapianto in serra le piante hanno ricevuto ulteriori trattamenti sette giorni dopo il trapianto con *Glomus iranicum tenuihypharum* (prodotto commerciale MycoUp) alla dose di 3 kg/ha ripetuto dopo i freddi invernali, un trattamento con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1,5 L/ha un mese dopo il trapianto ripetuto dopo i freddi invernali e un trattamento con AMILO-X LC alla dose di 2,5 L/ha due mesi dopo il trapianto ripetuto a fine marzo (Figura 3).

Figura 3: trapianto di piantine sottoposte a bio-protezione in vivaio presso il partner Il Vivaio

In data 06/07/2023 è stato prelevato un campione di terreno per un'analisi chimico-fisica. Il rapporto di prova n. 367/23, redatto in data 11/07/2023 dal partner Lab Center Sicilia, ha evidenziato che il terreno presenta una tessitura franco, sabbiosa argillosa, possiede un contenuto di calcare attivo adeguato, un rapporto carbonio/azoto (C/N) modesto, una concentrazione di sostanza organica e azoto totale adeguata e un contenuto di fosforo assimilabile sostenuto. Fra gli elementi scambiabili il calcio risulta presente in quantità adeguata, magnesio e il potassio elevati e sodio sostenuto. Il rapporto calcio/magnesio risulta basso, mentre il rapporto potassio/magnesio è ritenuto adeguato. Le percentuali dei principali cationi evidenziano un elevato contenuto di calcio, potassio e sodio, con una presenza elevata presenza di magnesio. I microelementi risultano presenti in quantità sostenuta. Infine, l'indice SAR (Sodio Adsorption Ratio) risulta adeguato. Si registrano rapporti Ca/Mg e K/Mg bassi, mentre i rapporti Cl/N e Na/Ca risultano adeguati. Al fine di indagare la popolazione del microbioma del suolo in data 06/07/2023 prima dell'espianto della coltura precedente e in data 02/10/2023 prima del trapianto della coltura oggetto della presente sperimentazione sono stati eseguiti dei campioni prelevando il suolo in prossimità dell'apparato radicale in punti diversi della rizosfera a circa 10 cm di profondità. In data 09/04/2024 è stato fatto un campionamento procedendo all'estirpazione di venti piante per tesi prelevando l'apparato radicale che è stato sottoposto a indagine fitopatologica da parte del D3A dell'Università di Catania i campioni non presentavano problematiche telluriche importanti. Contestualmente al campionamento si è proceduto alla mappatura della serra per quantificare la presenza di piante attaccate da nematodi utilizzato la scala Zeck (Figura 4).

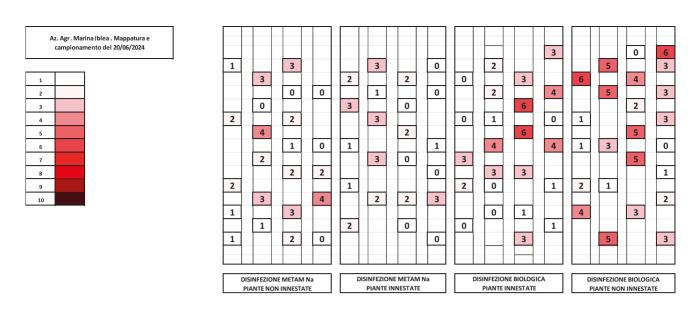


Figura 4: scala Zeck 1-10 grado infestazione attacco nematodi apparato radiale

I rilievi sulla produzione hanno evidenziato differenze statistiche significative: i migliori risultati in termini di resa in peso si sono avuti per le combinazione disinfezione biologica (ASD) su piante innestate (tesi T2) con una produzione pari a 129,17 t/ha, seguita da disinfezione chimica (MS) su piante innestate (T3) con una produzione pari a 126,00 t/ha le tesi non hanno presentato fra loro differenze statisticamente significative, seguite da disinfezione biologica (ASD) su piante non innestate (T1) pari a 119,25 t/ha e disinfezione chimica (MS) su piante non innestate (T4) 115,17 t/ha entrambi le tesi non hanno presentato differenze statistiche significative fra loro (Figura 5)

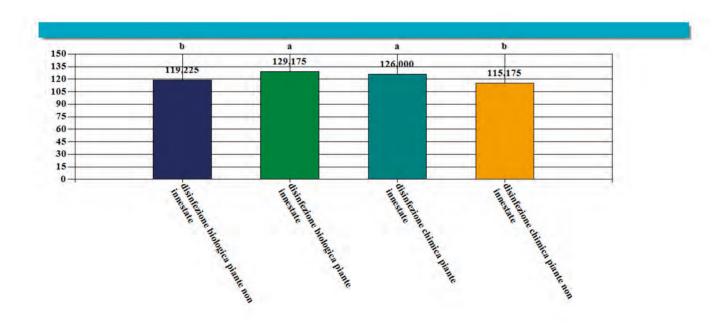
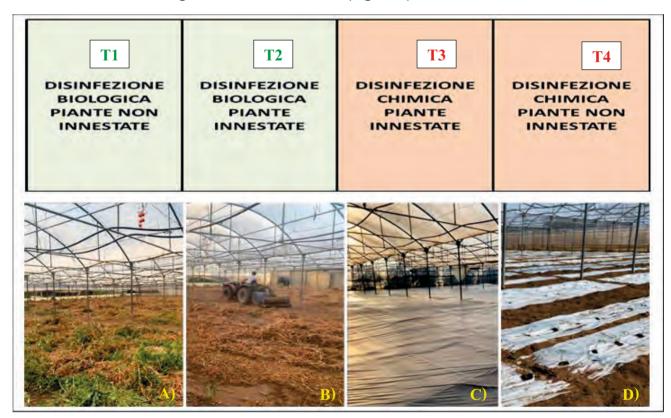



Figura 5: rese a ettaro tesi a confronto t/ha

5.3 Attività svolte presso il partner 'Il Pomo d'Oro'

Nell'ambito dell'azione 4.c.l. 'Impiego di residui di piante di pomodoro tal quali', è stato predisposto un disegno dimostrativo in coltura protetta presso il partner 'Il Pomo d'Oro, la serra in ferro ricadente in c.da Passi comune di Ispica (RG) oggetto della sperimentazione è stata divisa in quattro parcelloni di cui uno (T1) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante non innestate, uno (T2) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante innestate, uno (T3) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodum (prodotto commerciale utilizzato Geosaf 39) e impiego di piante innestate e uno (T4) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metamsodio (prodotto commerciale utilizzato Geosaf 39) e impiego di piante non innestate. Le attività preliminari al trapianto hanno riquardato un rilievo della coltura a fine ciclo per valutare il grado di presenza di sintomatologie telluriche (malattie e nematodi) presenti sulle piante del trapianto precedente dal quale non sono emerse particolari problematiche. Le piante sono state estirpate in data 14/07/2023 lasciate essiccare per trenta giorni al sole e successivamente triturate e interrate con frutti di pomodoro. La copertura del suolo è stata effettuata in data 10/08/2023 utilizzando film plastici impermeabili all'ossigeno in PE preoccupandosi subito di portare il terreno a saturazione di acqua tramite irrigazione per eliminare la presenza di ossigeno creando condizioni di aerobiosi ostili a diverse avversità telluriche mentre il trattamento chimico con il Metam-sodio e stato eseguito in data 24/08/2023 (Figura 6).

Figura 6: disegno sperimentale e fasi attuazione protocollo sperimentale. - A) Estirpo piante. - B) Interramento piante e frutti pomodoro. - C) Copertura parcelle per trattamento ASDE e MS – D) Trapianto

Il trapianto è stato effettuato in data 12/10/2023 con piantine di pomodoro ciliegino varietà Creativo (Clause) fornite dal *partner* Il Vivaio, in parte innestate su portainnesto Optifort, la

superficie dei singoli parcelloni era di 350 m² contenenti 500 piante per parcellone innestato e 1.000 piante per quello non innestato. Tutte le piantine delle tesi oggetto di disinfestazione biologica (T1 e T2), in vivaio sono state sottoposte a bioprotezione con trattamento alla semina con una formulazione liquida di *Bacillus amyloliquefaciens* ceppo D747 (prodotto commerciale AMILO-X LC) alla dose di 3 L/ha e un trattamento in accrescimento con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1 L/ha, successivamente al trapianto in serra queste piante hanno ricevuto ulteriori trattamenti sette giorni dopo il trapianto con *Glomus iranicum tenuihypharum* (prodotto commerciale MycoUp) alla dose di 3 kg/ha ripetuto dopo i freddi invernali, un trattamento con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1,5 L/ha un mese dopo il trapianto ripetuto dopo i freddi invernali e un trattamento con AMILO-X LC alla dose di 2,5 L/ha due mesi dopo il trapianto ripetuto a fine marzo (Figura 7).

Figura 7: trapianto di piantine sottoposte a bio-protezione in vivaio presso il partner II Vivaio

In data 06/07/2023 è stato prelevato un campione di terreno per un'analisi chimico-fisica. Il rapporto di prova n. 366/23, emesso dal laboratorio *partner* in data 11/07/2023 dal partner Lab Center Sicilia, ha evidenziato che il terreno presenta una tessitura franco-sabbiosa, possiede un contenuto di calcare attivo adeguato, un rapporto carbonio/azoto (C/N) basso e una concentrazione di sostanza organica e azoto totale soddisfacente e un contenuto di fosforo assimilabile sostenuto. Fra gli elementi scambiabili il calcio risulta presente in quantità adeguata mentre il magnesio e il potassio risultano modesti. Il rapporto calcio/magnesio risulta alto, mentre il rapporto potassio/magnesio è ritenuto adeguato. Le percentuali dei principali cationi confermano un elevato contenuto di calcio e sodio, con una presenza più contenuta di magnesio e potassio. Anche i microelementi risultano presenti in quantità appropriate. Infine, l'indice SAR (Sodio Adsorption Ratio) risulta elevato. Si registrano rapporti Ca/Mg e K/Mg piuttosto bassi, mentre i rapporti Cl/N e Na/Ca risultano elevati. Al fine di indagare la popolazione del microbioma del suolo in data 06/07/2023 prima dell'espianto della coltura precedente e in data 02/10/223

prima del trapianto della coltura oggetto della presente sperimentazione sono stati eseguiti dei campioni prelevando il suolo in prossimità dell'apparato radicale in punti diversi della rizosfera a circa 10 cm di profondità. In data 09/04/2024 è stato fatto un campionamento procedendo all'estirpazione di venti piante per tesi prelevando l'apparato radicale che è stato sottoposto a indagine fitopatologica da parte del D3A dell'Università di Catania i campioni non presentavano problematiche telluriche importanti. Contestualmente al campionamento si è proceduto alla mappatura della serra per quantificare la presenza di piante attaccate da nematodi utilizzato la scala Zeck (Figura 8).

Figura 8: scala Zeck 1-10 grado infestazione attacco nematodi apparato radiale

I rilievi sulla produzione hanno evidenziato differenze statistiche significative: i migliori risultati in termini di resa in peso si sono avuti per la combinazione disinfezione biologica del suolo (ASD) su piante innestate (tesi T2) con una produzione pari a 82,91 t/ha, seguita da disinfezione chimica del suolo (MS) su piante innestate (T4) con una produzione pari a 84,42 t/ha, disinfezione biologica del suolo (ASD) su piante non innestate (T1) pari a 77,42 t/ha e disinfezione chimica del suolo (MS) su piante non innestate (T3) 75,8 t/ha (Figura 9).

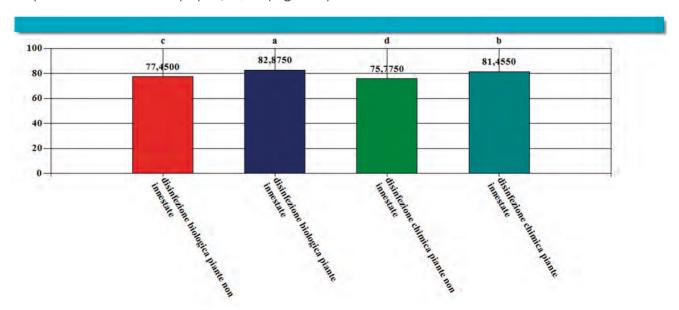
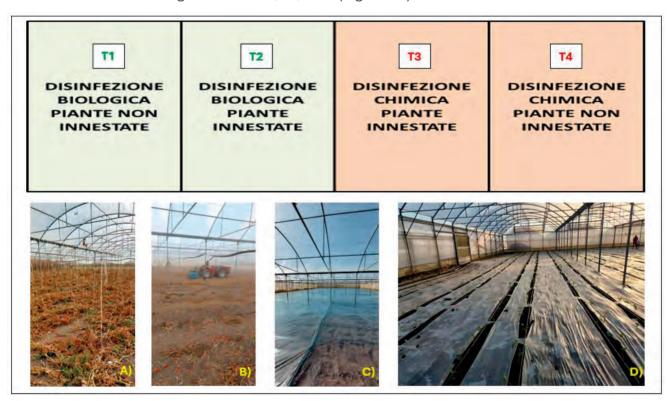



Figura 9: rese a ettaro tesi a confronto t/ha

5.4 Attività svolte presso il partner 'Ortomoncada'

Nell'ambito dell'azione 4.c.l. 'Impiego di residui di piante di pomodoro tal quali', è stato predisposto un disegno dimostrativo in coltura protetta presso il partner 'Ortomoncada, la serra in ferro ricadente in c.da Nardella comune di Ispica (RG) oggetto della sperimentazione è stata divisa in quattro parcelloni di cui uno (T1) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante non innestate, uno (T2) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante innestate, uno (T3) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodum (prodotto commerciale utilizzato Vapam) e impiego di piante innestate e uno (T4) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metamsodio (prodotto commerciale utilizzato Vapam) e impiego di piante non innestate. Le attività preliminari al trapianto hanno riguardato un rilievo della coltura a fine ciclo per valutare il grado di presenza di sintomatologie telluriche (malattie e nematodi) pre senti sulle piante del trapianto precedente dal quale non sono emerse particolari problematiche. Le piante sono state estirpate in data 11/07/2023 lasciate essiccare per trenta giorni al sole e successivamente triturate e interrate con frutti di pomodoro. La copertura del suolo è stata effettuata in data 19/08/2023 utilizzando film plastici impermeabili all'ossigeno in PE preoccupandosi subito di portare il terreno a saturazione di acqua tramite irrigazione per eliminare la presenza di ossigeno creando condizioni di aerobiosi ostili a diverse avversità telluriche mentre il trattamento chimico con il Metam-sodio e stato eseguito in data 11/09/2023 (Figura: 10).

Figura 10: disegno sperimentale e fasi attuazione protocollo sperimentale. - A) Estirpo piante. - B) Interramento piante e frutti pomodoro. - C) Copertura parcelle per trattamento ASDE e MS – D) Trapianto

Il trapianto è stato effettuato in data 09/10/2023 con piantine di pomodoro oblungo varietà Sir Elyan (Vilmorin) fornite dal *partner* Il Vivaio, in parte innestate su portainnesto Optifort, la

superficie dei singoli parcelloni era di 250 m² contenenti 500 piante per parcellone innestato e 1.000 piante per quello non innestato. Tutte le piantine delle tesi oggetto di disinfestazione biologica (T1 e T2), in vivaio sono state sottoposte a bioprotezione con trattamento alla semina con una formulazione liquida di *Bacillus amyloliquefaciens* ceppo D747 (prodotto commerciale AMILO-X LC) alla dose di 3 L/ha e un trattamento in accrescimento con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1 L/ha, successivamente al trapianto in serra queste piante hanno ricevuto ulteriori trattamenti e precisamente il 30/10/2023 e il 23/02/2024 con funghi micorrizzici *Funneliformis mosseae, Funneliformis caledonium e Rhizoglomus irregulare* (prodotto commerciale Rizoplant) alla dose di 0,5 kg/ha, un trattamento in data 06/11/2023 e 01/03/2024 con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1,5 L/ha e un trattamento in data 06/11/2023 e 15/03/2024 con AMILO-X LC alla dose di 2,5 L/ha (Figura: 11).

Figura 11: trapianto di piantine sottoposte a bio-protezione in vivaio presso il partner Il Vivaio

In data 06/07/2023 è stato prelevato un campione di terreno per un'analisi chimico-fisica. Il rapporto di prova n. 365/23 emesso dal laboratorio partner La Center Sicilia in data 10/07/2023, ha evidenziato che il terreno presenta una tessitura franco-sabbiosa-argillosa, possiede un contenuto di calcare attivo elevato, un rapporto carbonio/azoto (C/N) basso, una concentrazione di sostanza organica e azoto totale adeguata e un contenuto di fosforo assimilabile sostenuto. Fra gli elementi scambiabili il calcio, il potassio e il sodio risultano elevati mentre sostenuta quella del magnesio. Il rapporto calcio/magnesio risulta sostenuto, mentre quello potassio/magnesio elevato. Le percentuali dei principali cationi confermano un adeguato contenuto di calcio, potassio e sodio e un mosto contenuto in magnesio. Anche i microelementi risultano presenti in quantità sostenuta. Infine, l'indice SAR (Sodio Adsorption Ratio) risulta adeguato, il rapporto Ca/Mg e K/Mg elevato, mentre quello Cl/N adeguato. Al fine di indagare la popolazione del microbioma del suolo in data 06/07/2023 prima dell'espianto della coltura precedente e in data

02/10/223 prima del trapianto della coltura oggetto della presente sperimentazione sono stati eseguiti dei campioni prelevando il suolo in prossimità dell'apparato radicale in punti diversi della rizosfera a circa 10 cm di profondità (Figura 12).

Figura 12: campioni di suolo da sottoporre ad analisi metagenomica del microbioma

In data 09/04/2024 è stato fatto un campionamento estirpando venti piante per tesi prelevando l'apparato radicale che è stato sottoposto a indagine fitopatologica da parte del D3A dell'Università di Catania i campioni non presentavano problematiche telluriche importanti (Figura 13).

Figura 13: campioni di radici sa sottoporre ad indigine fitopatologica presso il D3A dell'Università di Catania

Contestualmente al campionamento si è proceduto alla mappatura della serra per quantificare la presenza di piante attaccate da nematodi utilizzato la scala Zeck (Figura 14).

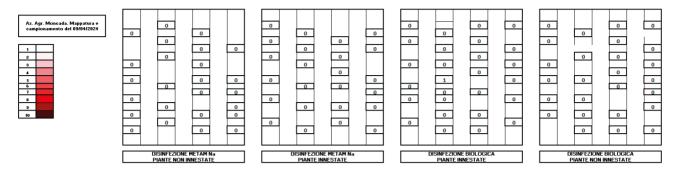
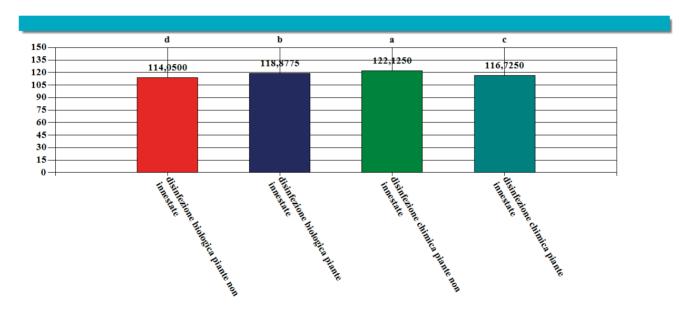
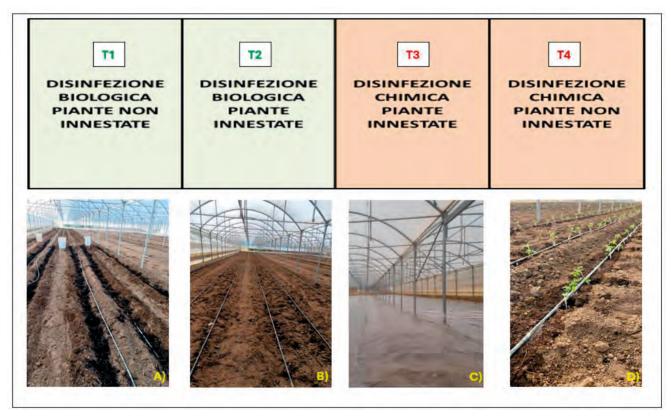


Figura 14: scala Zeck 1-10 grado infestazione attacco nematodi apparato radiale

I rilievi sulla produzione hanno evidenziato differenze statistiche significative: i migliori risultati in termini di resa in peso si sono avuti per la combinazione disinfezione chimica del suolo (MS) su piante innestate (tesi T3) con una produzione pari a 122,12 t/ha, seguita da disinfezione biologica del suolo (ASD) su piante innestate (T2) con una produzione pari a 118,88 t/ha, disinfezione chimica del suolo (MS) su piante non innestate (T4) pari a 116,72 t/ha e disinfezione biologica del suolo (ASD) su piante non innestate (T1) 114 t/ha (Figura 15).




Figura 15: rese a ettaro tesi a confronto t/ha

5.5 Attività svolte presso il partner 'Pellegrino Ignazio'

Nell'ambito dell'azione 4.d. 'Impiego di compost di piante di pomodoro, è stato predisposto un disegno dimostrativo in coltura protetta presso il *partner* 'Pellegrino Ignazio, la serra in ferro ricadente in c.da Petraro comune di Scicli (RG) oggetto della sperimentazione è stata divisa in

quattro parcelloni di cui uno (T1) sottoposto a disinfestazione biologica del suolo (ASD), uno (T2) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante innestate, uno (T3) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodio (prodotto commerciale utilizzato Vapam) e impiego di piante innestate e uno (T4) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodio (prodotto commerciale utilizzato Vapam) e impiego di piante non innestate. Le attività preliminari al trapianto hanno riguardato un rilievo della coltura a fine ciclo per valutare il grado di presenza di sintomatologie telluriche (malattie e nematodi) presenti sulle piante del trapianto precedente dal quale non sono emerse particolari problematiche. In data 26/07/2024 si è proceduto all'interramento di 5 kg/m² di compost il terreno è stato subito coperto utilizzando film plastici impermeabili all'ossigeno in PE preoccupandosi subito di portare il terreno a saturazione di acqua tramite irrigazione per eliminare la presenza di ossigeno creando condizioni di aerobiosi ostili a diverse avversità telluriche mentre il trattamento chimico con il Metam-sodio e stato eseguito in data 10/08/2024 (Figura 16).

Figura 16: disegno sperimentale e fasi attuazione protocollo sperimentale. - A) Distribuzione compost. - B) Interramento compost. - C) Copertura parcelle per trattamento ASDE e MS – D) Trapianto

Il trapianto è stato effettuato in data 12/09/2024 con piantine di pomodoro a grappolo varietà Teradion (Seminis) fornite dal *partner* Il Vivaio, in parte innestate su portainnesto Interpro, la superficie dei singoli parcelloni era di 425 m² contenenti 225 piante per parcellone innestato e 450 piante per quello non innestato. Tutte le piantine in vivaio sono state sottoposte a bioprotezione con trattamento alla semina con una formulazione liquida di *Bacillus amyloliquefaciens* ceppo D747 (prodotto commerciale AMILO -X LC) alla dose di 3 L/ha e un trattamento in accrescimento con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1 L/ha,

successivamente al trapianto in serra le piante hanno ricevuto ulteriori trattamenti e precisamente il 11/10/2024 e il 12/02/2025 con funghi micorrizzici *Funneliformis mosseae, Funneliformis caledonium e Rhizoglomus irregulare* (prodotto commerciale Rizoplant) alla dose di 0,5 kg/ha, un trattamento in data 09/11/2024 e 07/03/2025 con *Trichoderma asperellum e T. gamsii* (prodotto commerciale Remedier) alla dose di 1,5 L/ha e un trattamento in data 05/11/2024 e 21/03/2025 con AMILO-X LC alla dose di 2,5 L/ha (Figura 17).

Figura 17: piantine sottoposte a bio-controllo presso il vivaio partner II Vivaio. A) - Contenitore piantine non innestate. B) - Dettaglio piantina non innestata. C) – Trapianto piantina innestata

In data 17/09/2024 è stato prelevato un campione di terreno per un'analisi chimico-fisica. Il rapporto di prova n. 542/24 emesso dal laboratorio partner La Center Sicilia in data 24/09/2024, ha evidenziato che il terreno presenta una tessitura franco-sabbiosa, possiede un contenuto di calcare attivo elevato, un rapporto carbonio/azoto (C/N) modesto, una concentrazione di sostanza organica adeguata ed elevato contenuto di azoto totale e fosforo assimilabile sostenuto. Fra gli elementi scambiabili la presenza di calcio risulta modesto mentre quella di potassio, magnesio e sodio risultano elevati. I rapporti calcio/magnesio e potassio/magnesio risultano sostenuti. Le percentuali dei principali cationi confermano un modesto contenuto di calcio e una elevata concentrazione di potassio, magnesio e sodio. Da segnalare per i microelementi adeguata presenza di ferro ed elevata presenza di manganese, zinco e rame. Infine, l'indice SAR (Sodio Adsorption Ratio) risulta elevato, il rapporto Ca/Mg e K/Mg sono bassi, quello Cl/N sostenuto e quello Na/Ca adeguato. Al fine di indagare la popolazione del microbioma del suolo in data 11/09/2024 prima dell'espianto della coltura precedente stati eseguiti dei campioni prelevando il suolo in prossimità dell'apparato radicale in punti diversi della rizosfera a circa 10 cm di profondità (Figura 18).

Figura 18: campioni di suolo da sottoporre ad analisi metagenomica del microbioma

In data 15/04/2025 è stato fatto un campionamento procedendo all'estirpazione di venti piante per tesi osservando l'apparato radicale i campioni non presentavano nessun tipo di problematiche telluriche. In data 23/09/2024, 03/10/2024 e 17/10/2024 sono stati fatti dei rilievi sull'altezza delle piante (Figura 19 e Figura 20) mentre in data 25/10/2024 e 4/11/2024 misurazione dell'indice NDVI delle piante con l'utilizzo del Sensore Portatile GreenSeeker (Figura 21).

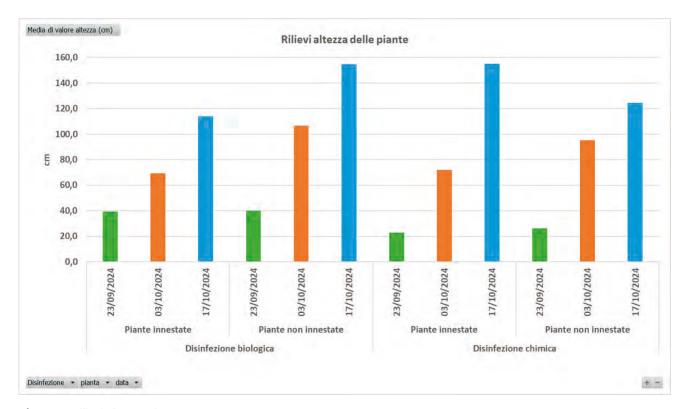


Figura 19: rilievi altezza piante

Figura 20: rilievo altezza piante

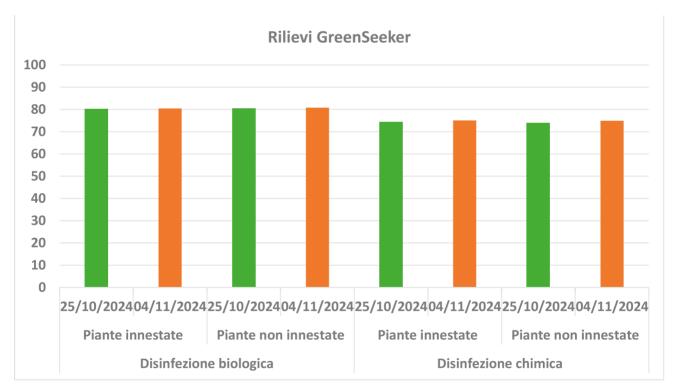


Figura 21: rilievo NDVI con l'utilizzo del Sensore Portatile GreenSeeker

A fine ciclo si è proceduto alla mappatura della serra per quantificare la presenza di piante attaccate da nematodi utilizzato la scala Zeck (1-10) che hanno evidenziato una presenza diffusa con grado di attacco medio (Figura 22).

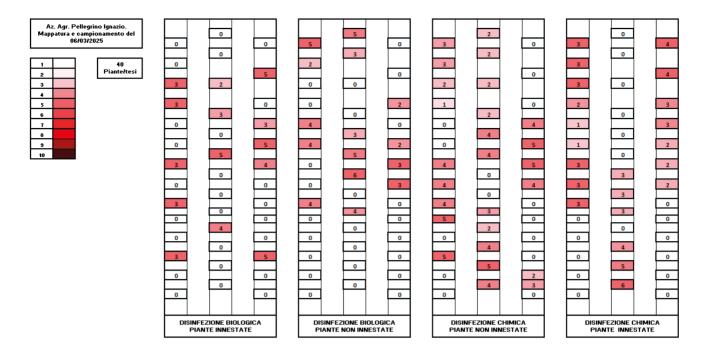


Figura 22: scala Zeck 1-10 grado infestazione attacco nematodi apparato radiale

I rilievi sulla produzione hanno evidenziato differenze statistiche significative: i migliori risultati in termini di resa in peso si sono avuti per la combinazione disinfezione chimica del suolo (MS) su piante non innestate (tesi T3) con una produzione pari a 45,88 t/ha, seguita da disinfezione chimica del suolo (MS) su piante innestate (tesi T4) con una produzione pari a 45,88 t/ha a seguire senza differenze statistiche significative le tesi disinfestazione biologica del suolo (ASD) con piante innestate (tesi T2) con produzione pari a 44,21 t/ha e disinfezione biologica del suolo (ASD) su piante non innestate (T1) pari a 44,20 t/ha (Figura 23).

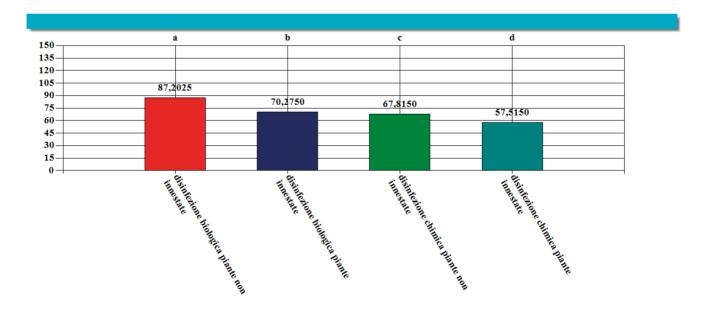
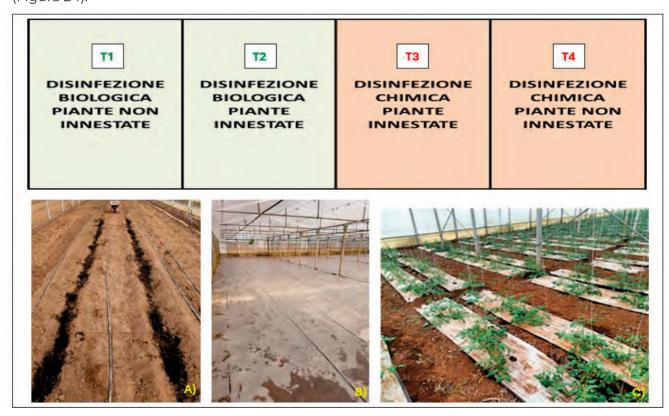



Figura 23: rese a ettaro tesi a confronto t/ha

5.6 Attività svolte presso il partner 'l 2 Carrubi'

Nell'ambito dell'azione 4.d. 'Impiego di compost di piante di pomodoro, è stato predisposto un disegno dimostrativo in coltura protetta presso il partner 'I 2 Carrubi, la serra in cemento e ferro ricadente in c.da Serragiumenta comune di Scicli (RG) oggetto della sperimentazione è stata divisa in quattro parcelloni di cui uno (T1) sottoposto a disinfestazione biologica del suolo (ASD), uno (T2) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante innestate, uno (T3) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodio (prodotto commerciale utilizzato Vapam) e impiego di piante innestate e uno (T4) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodio (prodotto commerciale utilizzato Vapam) e impiego di piante non innestate. Le attività preliminari al trapianto hanno riguardato un rilievo della coltura a fine ciclo per valutare il grado di presenza di sintomatologie telluriche (malattie e nematodi) presenti sulle piante del trapianto precedente dal quale non sono emerse particolari problematiche. In data 14/06/2024 si è proceduto all'interramento di 5 kg/m² di compost il terreno è stato subito co perto utilizzando film plastici impermeabili all'ossigeno in PE preoccupandosi subito di portare il terreno a saturazione di acqua tramite irrigazione per eliminare la presenza di ossigeno creando condizioni di aerobiosi ostili a diverse avversità telluriche mentre il trattamento chimico con il Metam-sodio e stato eseguito in data 27/08/2024 (Figura 24).

Figura 24: disegno sperimentale e fasi attuazione protocollo sperimentale. - A) Distribuzione compost. - B) Copertura parcelle per trattamento ASDE e MS - C) Coltura in atto

Il trapianto è stato effettuato in data 27/09/2024 con piantine di pomodoro datterino varietà SV 1201TC (Seminis) fornite dal *partner* Il Vivaio, in parte innestate su portainnesto Interpro, la superficie dei singoli parcelloni era di 150 m² contenenti 100 piante per parcellone innestato e 200 piante per quello non innestato. Tutte le piantine in vivaio sono state sottoposte a bioprotezione

con trattamento alla semina con una formulazione liquida di *Bacillus amyloliquefaciens* ceppo D747 (prodotto commerciale AMILO -X LC) alla dose di 3 L/ha e un trattamento in accrescimento con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1 L/ha, successivamente al trapianto in serra le piante hanno ricevuto ulteriori trattamenti e precisamente il 11/10/2024 e il 05/02/2025 con funghi micorrizzici *Funneliformis mosseae, Funneliformis caledonium* e *Rhizoglomus irregulare* (prodotto commerciale Rizoplant) alla dose di 0,5 kg/ha, un trattamento in data 10/11/2024 e 07/03/2025 con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1,5 L/ha e un trattamento in data 06/11/2024 e 21/03/2025 con AMILO-X LC alla dose di 2,5 L/ha (Figura 25).

Figura 25: trapianto di piantine sottoposte a bio-controllo presso il vivaio partner Il Vivaio.

In data 12/06/2024 è stato prelevato un campione di terreno per un'analisi chimico-fisica. Il rapporto di prova n. 429/24 emesso dal laboratorio partner La Center Sicilia in data 17/06/2024, ha evidenziato che il terreno presenta una tessitura franco-sabbiosa, con adeguato contenuto di calcare attivo elevato, un rapporto carbonio/azoto (C/N) modesto, una concentrazione di sostanza organica modesta, adeguato contenuto di azoto totale e fosforo assimilabile sostenuto. Fra gli elementi scambiabili modesta presenza di calcio e magnesio e sostenuto contenuto di potassio e sodio. Rapporto calcio/magnesio adeguato, sostenuto quello potassio/magnesio. Le percentuali dei principali cationi confermano un adeguato contenuto di calcio, magnesio e potassio e una elevata concentrazione di sodio. Da segnalare per i microelementi una concentrazione adeguata. Infine, l'indice SAR (Sodio Adsorption Ratio) risulta elevato, il rapporto Ca/Mg e K/Ca risulta basso, adeguato quello K/Mg. Al fine di indagare la popolazione del microbioma del suolo sono stati eseguiti dei campioni prelevando il suolo in diversi punti dei parcelloni (Figura 26).

Figura 26: campioni di suolo da sottoporre ad analisi metagenomica del microbioma

In data 21/04/2025 è stato fatto un campionamento procedendo all'estirpazione di venti piante per tesi osservando l'apparato radicale i campioni non presentavano nessun tipo di problematiche telluriche. In data 07/10/2024, 16/10/2024 sono stati fatti dei rilievi sull'altezza delle piante (Figura 27) mentre in data 20/11/2024 e 29/11/2024 misurazioni dell'indice NDVI delle piante con l'utilizzo del Sensore Portatile GreenSeeker (Figura 28).

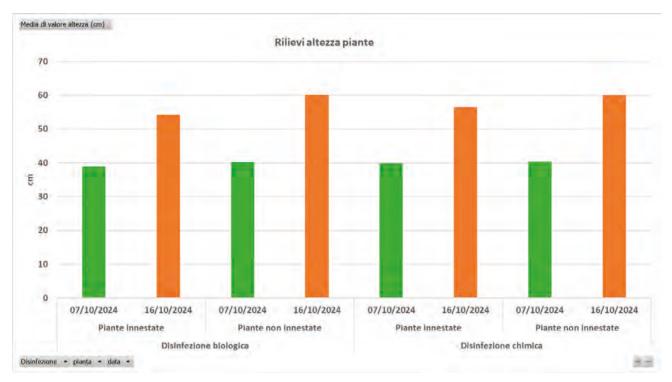


Figura 27: rilievi altezza piante

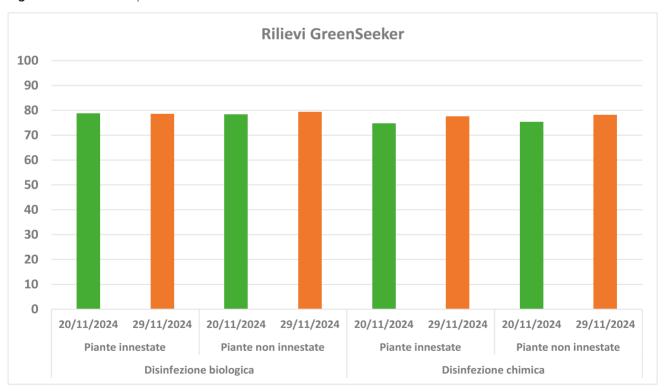


Figura 28: indice NDVI con utilizzo Sensore Portatile GreenSeeker

A fine ciclo si è proceduto alla mappatura della serra per quantificare la presenza di piante attaccate da nematodi utilizzato la scala Zeck (1-10) che hanno evidenziato una presenza diffusa con grado di attacco medio (Figura 29).

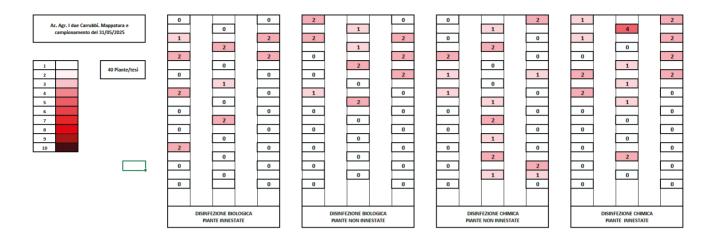


Figura 29: scala Zeck 1-10 grado infestazione attacco nematodi apparato radiale

I rilievi sulla produzione hanno evidenziato differenze statistiche significative: i migliori risultati in termini di resa in peso si sono avuti per la combinazione disinfezione chimica del suolo (MS) su piante non innestate (tesi T3) con una produzione pari a 75,73 t/ha, seguita da disinfezione biologica del suolo (ASD) su piante non innestate (tesi T1) con una produzione pari a 72,97 t/ha a seguire le tesi disinfestazione chimica del suolo (MS) su piante innestate (tesi T4) con produzione pari a 63,9,2 t/ha e disinfezione biologica del suolo (ASD) su piante innestate (T2) pari a 62,58 t/ha (Figura 30).

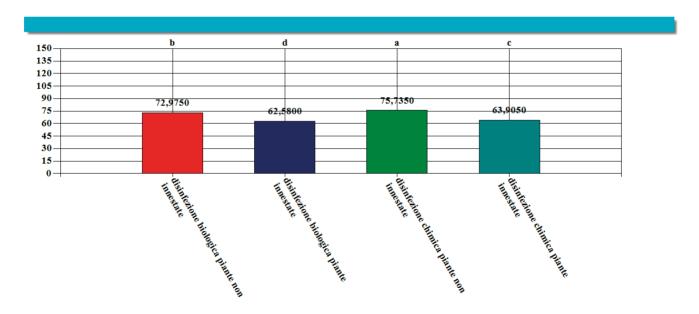
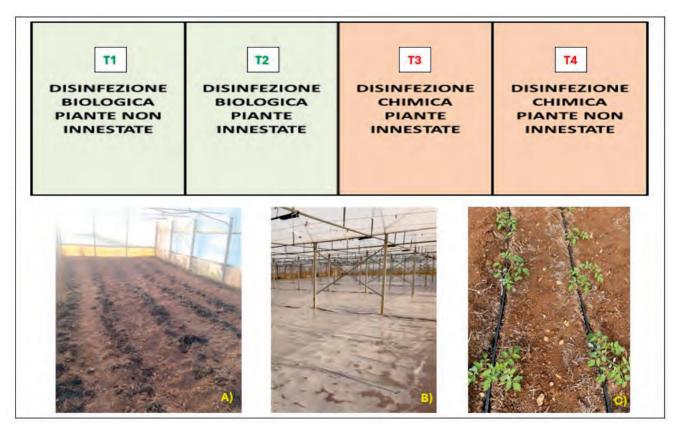



Figura 30: rese a ettaro tesi a confronto t/ha

5.7 Attività svolte presso il partner 'Società Agricola TO.FI. SS'

Nell'ambito dell'azione 4.d. 'Impiego di compost di piante di pomodoro, è stato predisposto un disegno dimostrativo in coltura protetta presso il partner 'TO.FI. SS, la serra in cemento e ferro ricadente in c.da Giarrantini comune di Scicli (RG) oggetto della sperimentazione è stata divisa in quattro parcelloni di cui uno (T1) sottoposto a disinfestazione biologica del suolo (ASD), uno (T2) sottoposto a disinfestazione biologica del suolo (ASD) con impiego di piante innestate, uno (T3) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodio (prodotto commerciale utilizzato Vapam) e impiego di piante innestate e uno (T4) sottoposto a disinfestazione chimica del suolo (MS) con utilizzo di Metam-sodio (prodotto commerciale utilizzato Vapam) e impiego di piante non innestate. Le attività preliminari al trapianto hanno riguardato un rilievo della coltura a fine ciclo per valutare il grado di presenza di sintomatologie telluriche (malattie e nematodi) presenti sulle piante del trapianto precedente dal quale non sono emerse particolari problematiche. In data 02/08/2024 si è proceduto all'interramento di 5 kg/m² di compost il terreno è stato subito coperto utilizzando film plastici impermeabili all'ossigeno in PE preoccupandosi subito di portare il terreno a saturazione di acqua tramite irrigazione per eliminare la presenza di ossigeno creando condizioni di aerobiosi ostili a diverse avversità telluriche mentre il trattamento chimico con il Metam-sodio e stato eseguito in data 23/08/2024 (Figura 31).

Figura 31: disegno sperimentale e fasi attuazione protocollo sperimentale. - A) Distribuzione compost. - B) Copertura parcelle per trattamento ASDE e MS – C) Trapianto

Il trapianto è stato effettuato in data 27/09/2024 con piantine di pomodoro mini-plum varietà Teocle (Vilmorin) fornite dal *partner* Il Vivaio, in parte innestate su portainnesto Interpro, la superficie dei singoli parcelloni era di 250 m² contenenti 250 piante per parcellone innestato e 500 piante per quello non innestato. Tutte le piantine in vivaio sono state sottoposte a bioprotezione con trattamento alla semina con una formulazione liquida di *Bacillus amyloliquefaciens* ceppo D747 (prodotto commerciale A MILO-X LC) alla dose di 3 L/ha e un trattamento in accrescimento con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1 L/ha, successivamente al trapianto in serra le piante hanno ricevuto ulteriori trattamenti e precisamente il 12/10/2024 e il 06/02/2025 con funghi micorrizzici *Funneliformis mosseae, Funneliformis caledonium* e *Rhizoglomus irregulare* (prodotto commerciale Rizoplant) alla dose di 0,5 kg/ha, un trattamento in data 12/11/2024 e 08/03/2025 con *Trichoderma asperellum* e *T. gamsii* (prodotto commerciale Remedier) alla dose di 1,5 L/ha e un trattamento in data 07/11/2024 e 22/03/2025 con AMILO-X LC alla dose di 2,5 L/ha (Figura 32).

Figura 32: piantine sottoposte a bio-controllo presso il vivaio partner Il Vivaio.

In data 12/06/2024 è stato prelevato un campione di terreno per un'analisi chimico-fisica. Il rapporto di prova n. 428/24 emesso dal laboratorio partner La Center Sicilia in data 17/06/2024, ha evidenziato che il terreno presenta una tessitura franco, sabbiosa, argillosa, con adeguato contenuto di calcare attivo, un rapporto carbonio/azoto (C/N) modesto, una concentrazione di sostanza organica modesta, adeguato contenuto di azoto totale e fosforo assimilabile sostenuto. Fra gli elementi scambiabili si segnala un elevato quantitativo di calcio, magnesio e sodio sostenuto contenuto di potassio. Rapporto calcio/magnesio adeguato, modesto quello potassio/magnesio. Le percentuali dei principali cationi confermano un adeguato contenuto di calcio, magnesio un modesto quantitativo di potassio e una elevata presenza di sodio. Da segnalare per i microelementi una concentrazione adeguata. Infine, l'indice SAR (Sodio Adsorption Ratio) risulta elevato, il rapporto Ca/Mg e K/Ca risulta basso, sostenuto quello K/Mg e basso quello K/Ca. Al fine di indagare la popolazione del microbioma del suolo sono stati eseguiti dei campioni prelevando il suolo nei diversi parcelloni a circa 10 cm di profondità (Figura 33).

Figura 33: campioni di suolo da sottoporre ad analisi metagenomica del microbioma

In data 21/04/2025 è stato fatto un campionamento procedendo all'estirpazione di venti piante per tesi osservando l'apparato radicale i campioni non presentavano nessun tipo di problematiche telluriche. In data 07/10/2024, 16/10/2024 sono stati fatti dei r ilievi sull'altezza delle piante (Figure 34 e 35) mentre in data 20/11/2024 e 29/11/2024 misurazioni dell'indice NDVI delle piante con l'utilizzo del Sensore Portatile GreenSeeker (Figure 36).

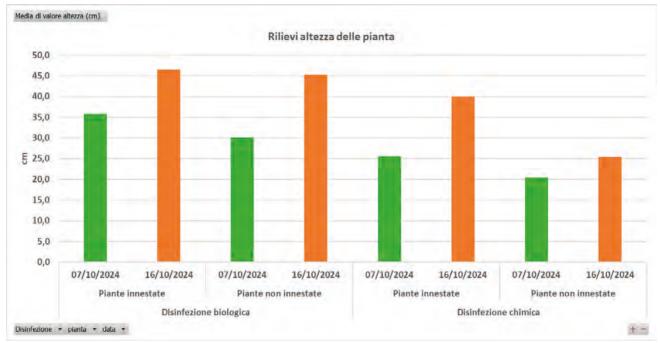


Figura 34: rilievi altezza piante

Figura 35: rilievo altezza piante

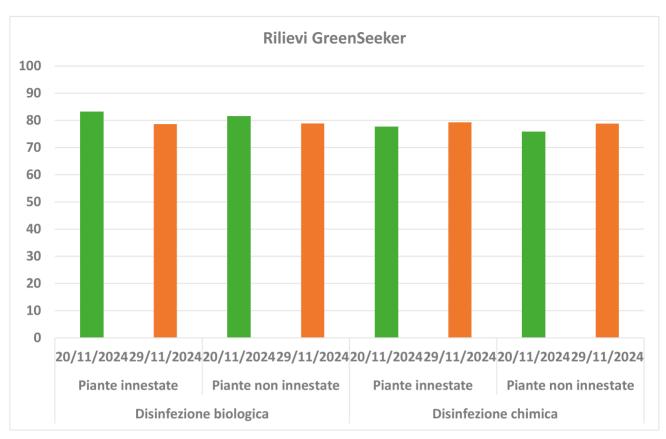


Figura 36: indice NDVI con utilizzo Sensore Portatile GreenSeeker

A fine ciclo si è proceduto alla mappatura della serra per quantificare la presenza di piante attaccate da nematodi utilizzato la scala Zeck (1-10) che hanno evidenziato una presenza diffusa con grado di attacco medio basso (Figura 37).

I rilievi sulla produzione hanno evidenziato differenze statistiche significative: i migliori risultati in termini di resa in peso si sono avuti per la combinazione disinfezione chimica del suolo (MS) su piante non innestate (tesi T3) con una produzione pari a 45,88 t/ha, seguita da disinfezione chimica (MS) su piante innestate (tesi T4) con una produzione pari a 45,25 t/ha a seguire con

risultati simili senza differenze statisticamente significative le tesi disinfestazione biologica del suolo (ASD) su piante non innestate (tesi T1) con produzione pari a 44,2 t/ha e disinfezione biologica del suolo (ASD) su piante innestate (T2) pari a 44,21 t/ha (Figura 38).

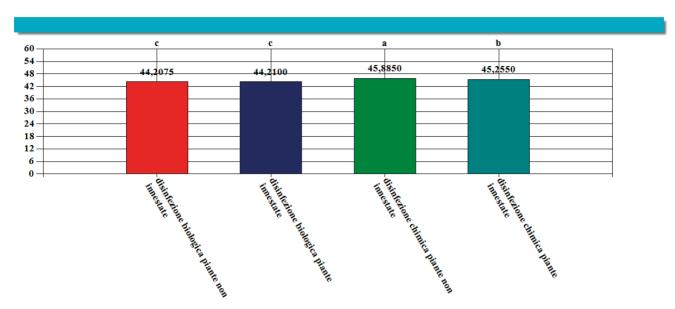


Figura 38: rese a ettaro tesi a confronto t/ha

5.8 Attività svolte presso i partner 'OP Moncada, Colle d'Oro Bio, Mallia Emanuele'

I suddetti partner hanno partecipato alla produzione di compost da utilizzare nelle attività di disinfestazione anaerobica del suolo, impiegando piante di pomodoro al 50% di peso secco con aggiunta di sostanza organica rappresentata da prodotto di scarto di pomodoro e letame. Le piante di pomodoro a fine ciclo sono state triturate presso aree dedicate tramite utilizzo di zappatrici meccaniche, addizionate con scarti di pomodoro e letame e sottoposte a triturazione (Figure 39, 40, 41, 42). Il materiale iniziale, quindi è stato poi posto in cumuli preoccupandosi di posizionare alla base degli stessi prodotti un po' più grossolani come parti di piante di pomodoro e foglie secche questo al fine di agevolare la ventilazione.

Figura 39: piante e frutti di pomodoro più sostanza organica prima della triturazione

Figura 40: piante, frutti di pomodoro e sostanza organica sottoposte a triturazione

Figura 41: piante, frutti di pomodoro e sostanza organica sottoposte rimescolamento prima della preparazione dei cumuli

Figura 42: cumulo in attesa di copertura

I cumuli una volta preparati sono stati coperti con film plastici neri (Figure 43, 44,) e sottoposti a monitoraggio continuo delle temperature, tramite l'utilizzo di sensori digitali posizionati nella parte centrale (Figura 45, 46, 47, 48).

Figura 43: cumuli di compost

Figura 44: cumulo di compost

Figura 45: sensore monitoraggio temperatura e umidità

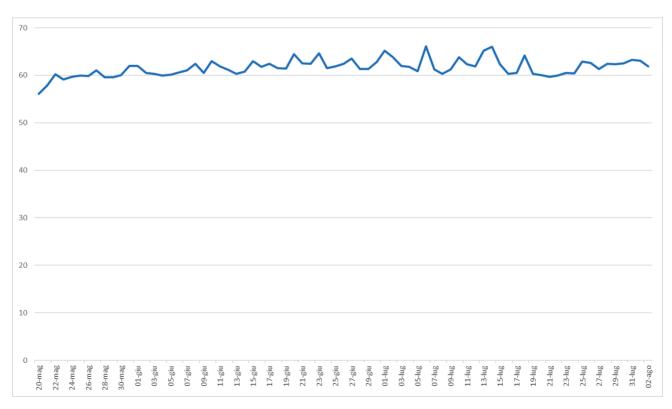


Figura 46: monitoraggio temperatura media giornaliera compost Colle d'Oro.

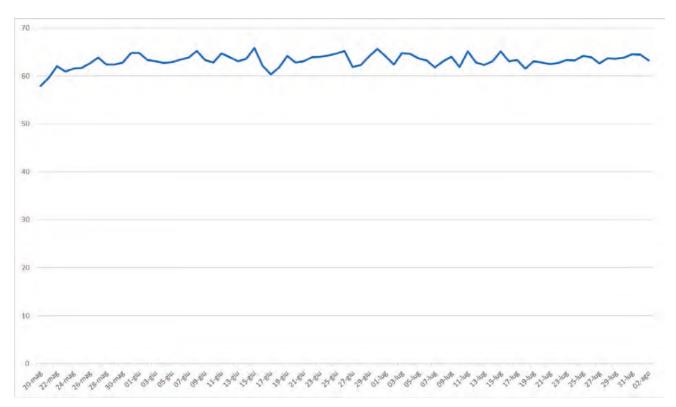


Figura 47: monitoraggio temperatura media giornaliera compost azienda Mallia Emanuele.

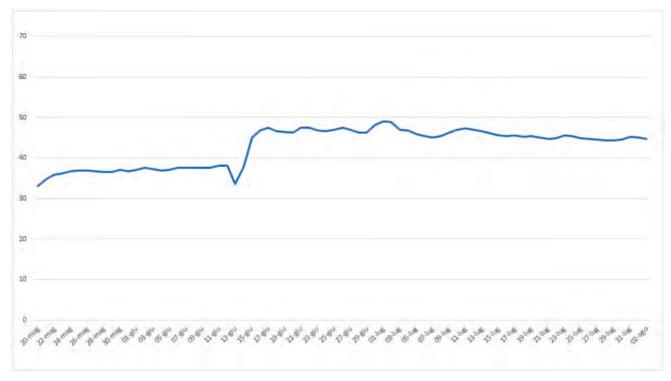


Figura 48: monitoraggio temperatura media giornaliera compost Moncada.

Durante il periodo estivo i diversi cumuli sono stati scoperti, bagnati con acqua, rimescolati e rifatti il tutto al fine di incrementare le temperature delle masse organiche. Il compost una volta pronto è stato distribuito presso i siti oggetto delle prove di campo alla dose di 5 kg/m2.

6 Le analisi del microbioma

6.1 La disinfestazione Anaerobica del Suolo e il microbioma

La Disinfestazione Anaerobica del Suolo (ASD) emerge come una soluzione promettente e sostenibile non chimica, eco-compatibile e socialmente accettabile. Questo metodo innovativo mira a migliorare la salute del suolo e la produttività delle colture attraverso la creazione di condizioni anaerobiche che sopprimono i patogeni e promuovono un microbioma tellurico benefico.

L'ASD è un processo basato su tre passaggi chiave: incorporazione di una fonte di carbonio labile, saturazione del suolo con acqua: Il terreno viene irrigato fino alla capacità di campo per saturare gli spazi porosi; copertura del suolo con un telo impermeabile ai gas: Un telo di polietilene impedisce l'ingresso di ossigeno, favorendo lo sviluppo di condizioni anaerobiche. Questo trattamento può durare da 2 a 21 settimane, ma in genere si aggira tra le 3 e le 6 settimane.

L'efficacia dell'ASD è intrinsecamente legata alle profonde modificazioni che induce nella comunità microbica del suolo. Il microbioma del suolo gioca un ruolo vitale durante l'intero trattamento ASD. L'aggiunta di una fonte di carbonio prontamente disponi bile stimola una rapida crescita dei microrganismi aerobici, che consumano l'ossigeno residuo e inducono rapidamente condizioni anaerobiche. Questo porta a un passaggio della comunità batterica verso anaerobi facoltativi e obbligati (Figura 49).

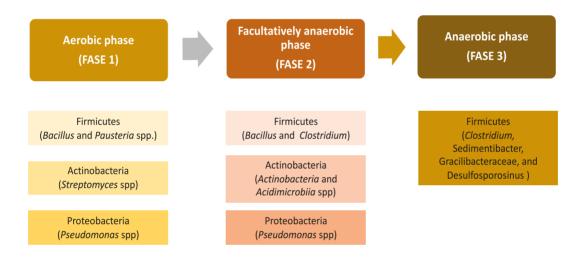


Figura 49: evoluzione delle comunità microbiche durante le tre fasi della disinfestazione anaerobica del suolo (ASD)

Altri cambiamenti temporali delle comunità batteriche, tuttavia, si possono osservare anche a distanza di tempo dalla fine del trattamento ASD e generalmente con il tempo si osserva l'aumento dei batteri aerobi. Tuttavia, è riportato che esiste un "effetto memoria" dello stress anaerobico sulla composizione della comunità batterica anche tre mesi dopo il trattamento ASD. I cambiamenti delle comunità microbiche sono correlati anche alle variazioni nella disponibilità di nutrienti e nel suolo e negli input di substrati organici incorporati. L'aumento o la diminuzione della diversità sembrano invece fattori contingenti e derivanti da condizioni specifiche.

Sebbene i meccanismi esatti non siano completamente compresi, l'ASD sopprime i patogeni tellurici attraverso una combinazione di effetti che coinvolgono il microbioma:

 Produzione di composti antimicrobici: I microrganismi anaerobici decompongono le fonti di carbonio, rilasciando composti organici volatili (VOCs) e acidi organici come acido acetico e acido n-butirrico. Questi acidi possono abbassare il pH del suolo, rendendo l'ambiente sfavorevole per molti patogeni e tossico per i nematodi. Composti solforati volatili, come il dimetil trisolfuro, mostrano proprietà antifungine e nematicide.

- Condizioni letali di anaerobiosi: La drastica riduzione dell'ossigeno (sotto l'1%) nel suolo crea un ambiente letale per i patogeni aerobici e modifica il potenziale redox del suolo (Eh), influenzando i cicli di nutrienti e la produzione di metano.
- Antagonismo microbico: Il microbioma beneficiario, prosperando in condizioni anaerobiche, compete con i patogeni per le risorse, produce antibiotici e manifesta comportamenti parassitici, rafforzando le difese del suolo.

6.2 L'approccio allo studio del microbioma nel progetto

La metagenomica è una disciplina emergente che si colloca nell'ambito delle tecniche 'coltura-indipendenti', consentendo lo studio delle comunità microbiche direttamente nel loro habitat naturale, senza la necessità di isolare e coltivare individualmente i microrganismi. Questo approccio sfrutta metodologie genomiche avanzate che permettono di estrarre, amplificare e analizzare il DNA ambientale, generando milioni di sequenze genetiche. Tali sequenze vengono poi distinte e interpretate grazie all'utilizzo di sofisticati strumenti bioinformatici, che facilitano l'identificazione e la classificazione dei microrganismi presenti.

Grazie alla metagenomica è possibile ottenere un quadro dettagliato della composizione delle comunità batteriche e fungine, nonché calcolare indici di diversità e analizzare variazioni nella struttura microbica in relazione a variabili ambientali o antropi che. Questo consente di esplorare in modo sistematico la biodiversità invisibile e di comprendere meglio il ruolo ecologico dei microrganismi.

Nell'ambito del presente progetto è stata adottata la metodologia di metagenomica ampliconbased, comunemente definita metabarcoding, che si basa sull'amplificazione di specifici marcatori genici universali, come il gene 16S rRNA per i batteri e il gene ITS per i funghi. Questa tecnica ha permesso di ottenere un profilo preciso delle comunità microbiche analizzate, fornendo informazioni essenziali per l'interpretazione dei dati ambientali e biologici raccolti.

I presente studio si propone di fornire un contributo pratico significativo, affiancando la ricerca scientifica, mediante la valutazione della risposta delle comunità microbiche del suolo al trattamento di Disinfestazione Anaerobica del Suolo (ASD) in confronto con un fumigante chimico (Metam sodio). Questa analisi è stata condotta in sei aziende serricole commerciali dedicate alla produzione di pomodoro, con l'obiettivo di chiarire gli impatti specifici e le dinamiche temporali di questi trattamenti sulla composizione e diversità delle comunità microbiche in condizioni reali di coltivazione in serra.

Tale ricerca mira a contribuire direttamente all'ottimizzazione delle strategie per una gestione sostenibile della salute del suolo e della produttività delle colture, evidenziando il ruolo del microbioma come fattore chiave per la soppressione dei patogeni e il miglioramento della fertilità del suolo.

6.3 Metodologia: caratteristiche e origine dei campioni di suolo

Lo studio delle comunità microbiche è stato condotto in due anni, 2023 e 2024 e ogni anno sono stati analizzati i campioni di tre aziende (diverse nei due anni) in cui la serra aziendale nel periodo di pausa estiva era sottoposta per metà a trattamento ASD e la restante parte con Metam-sodio Le tesi allo studio di seguito sono state riportate come ASD e MS.

Le serre nello studio del 2023 erano site nelle aziende indicate nel report come 2023 L, M e P:

- 1) azienda FIIi. Licitra (L)
- 2) azienda Ortomoncada (M)
- 3) azienda II Pomo d'oro (P)

Le serre nello studio del 2024 erano le aziende indicate nel report come 2024 G, C e P:

- 1) azienda TO.FI (G)
- 2) azienda I due Carrubi (C)
- 3) azienda Pellegrino Ignazio (P)

Il Campionamento a cura del personale SATA è stato realizzato come segue: per ciascun sito e trattamento sono stati prelevati cinque campioni in aree distinte della serra; ogni campione rappresentava un campione collettivo, ottenuto dalla miscelazione di cinque sub campioni.

Dopo la miscelazione, il campione è stato trasferito in contenitori sterili e trasportato in condizioni refrigerate presso il Dipartimento di Agricoltura, Alimentazione e Ambiente, dove è stato conservato a -80 °C fino al momento delle analisi.

6.4 Metodologia: preparazione del campione e estrazione del DNA microbico

Il protocollo già consolidato presso il laboratorio di Biotecnologie fitosanitarie e Laboratorio di Batteriologia fitopatologica prevede una successione di fasi che permettono di processare il campione a partire da una quantità di suolo pari a 1 grammo e permettendo di ottenere un sedimento di estrazione che costituisce il materiale di partenza per l'estrazione del DNA che precederà l'analisi metagenomica.

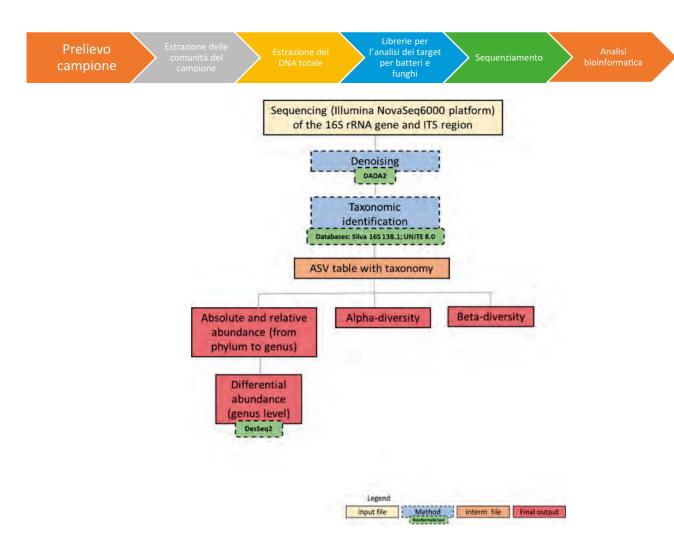
6.5 Metodologia: Analisi del microbioma e analisi bioinformatica

Per l'analisi del microbioma sono state selezionate due regioni target specifiche per l'identificazione delle comunità microbiche: la regione V3-V4 del gene 16S rRNA, utilizzata per la caratterizzazione della diversità e della composizione delle comunità batteriche; la regione intergenica ITS (Internal Transcribed Spacer) dell'operone rRNA, impiegata per l'analisi delle comunità fungine, in quanto altamente variabile.

Queste regioni sono state amplificate e sequenziate per ottenere un quadro dettagliato della struttura e della diversità microbica nelle diverse condizioni sperimentali. Il sequenziamento ad alta processività (HTS) è stato realizzato con lo strumento NovaS eq 6000 di Illumina. I dati ottenuti sono stati elaborati con metodologie bioinformatiche presso il Di3A per determinare la composizione tassonomica, la diversità alfa e beta e le relazioni tra i diversi gruppi microbici nelle condizioni sperimentali analizzate.

Nella Figura 50 sono illustrati tutti passaggi che portano dall'ottenimento delle sequenze grezze all'elaborazione fino alla formulazione di grafici e dati utili per il commento dei risultati.

Di seguito, vengono descritte nel dettaglio le singole analisi effettuate.


<u>Diversità alfa</u>. L'indice di diversità alfa permette di misurare la ricchezza di specie in un singolo campione e la distribuzione degli individui al suo interno. È stata valutata attraverso il parametro della ricchezza con l'indice *Observed* e quello della diversità con l'indice *Shannon*.

<u>Diversità beta.</u> L'analisi della beta-diversità è stata svolta considerando l'indice di Bray-Curtis per valutare il livello di similarità tra i campioni. Per rappresentare graficamente quest'analisi, gli indici di Bray-Curtis, relativi al confronto tra ogni coppia possibile dei campioni allo studio, sono stati a loro volta sottoposti all'analisi delle Coordinate Principali (PCoA).

Abbondanze relative. L'analisi bioinformatica permette di ottenere un raggruppamento delle sequenze relative ai campioni. In questa prova abbiamo utilizzato il metodo delle ASV, che rappresentano Varianti della Sequenza dell'Amplicone, tenendo conto delle differenze di singol e varianti e quindi permettendo una maggiore risoluzione durante la caratterizzazione della diversità delle comunità microbiche. Attraverso questi strumenti, è possibile ottenere un'identificazione a livello tassonomico dei funghi e batteri, relativa ai vari livelli dunque:

Regno -> Phylum -> Classe -> Ordine -> Famiglia -> Genere -> Specie

Figura 50: Diagramma di flusso dell'analisi bioinformatica svolte sulle librerie di sequenziamento del gene 16S e della regione ITS rispettivamente per le comunità batteriche e fungine

Abbondanze differenziali. Queste riguardano le variazioni significative nella quantità relativa di specifici microrganismi (come batteri o funghi) tra due o più gruppi di campioni biologici, nel nostro caso trattamenti ASD e MS.

6.6 Risultati

L'obiettivo principale di questa attività è stato lo studio delle comunità microbiche (batteriche e fungine) del suolo in seguito al trattamento durante il periodo di pausa di coltivazione estiva con ASD. Le comunità microbiche relative al trattamento con ASD sono state confrontate con le comunità del suolo trattato con Metam-sodio: anche questo trattamento è stato applicato in ognuna delle sei serre appartenenti alle stesse aziende in cui è stato applicato il trattamento con ASD. Il campionamento ha previsto la raccolta dei campioni di suolo in tre aziende nel 2023 (Azienda Licitra, Azienda Ortomoncada, Azienda Il Pomo D'oro, di seguito indicate rispettivamente 'L', 'M' e 'P' per brevità) e di altre tre 2024 (Azienda I due Carrubi, Azienda TO.FI SS, Azienda Pellegrino Ignazio, rispettivamente 'C', 'G' e 'P').

6.7 Risultati: Analisi bioinformatiche, dal denoising sulle sequenze grezze all'ottenimento delle ASV table

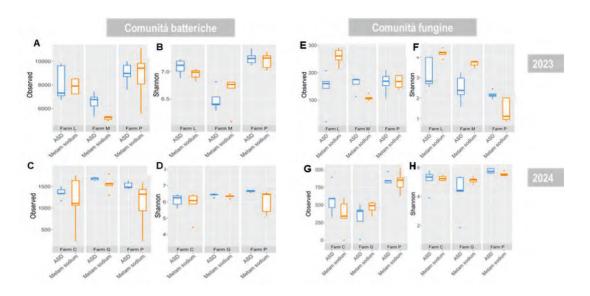
Nei due anni sono stati analizzati un totale di 120 campioni, ovvero analisi delle comunità batteriche e fungine per 60 campioni di suolo. Successivamente all'estrazione del DNA (16S per le comunità procariotiche e ITS per quelle eucariotiche) da questi campioni e al relativo sequenziamento, i dati ottenuti contenenti le sequenze del DNA microbico sono stati scaricati e raccolti nei sistemi informatici a nostra diposizione per poi essere sottoposti a specifiche analisi bioinformatiche per studiarne la composizione tassonomica e la loro diversità ecologica (Figura 50). Relativamente all'esperimento del 2023, l'analisi metagenomica amplicon-based ha portato all'ottenimento di più di 28 milioni e 8 milioni di read grezze (definite anche raw read) rispettivamente per le comunità procariotiche ed eucariotiche. L'esperimento del 2024 ha invece portato all'ottenimento di più di 3 milioni di raw read procariotiche e 2 milioni di raw read eucariotiche.

Utilizzando il software QIIME2 (v. 2024.10) per mezzo di un processo descritto in figura abbiamo ottenuto le cosiddette read pulite utilizzate per identificare le varianti di Sequenze di Ampliconi (ASV), le cui read si distinguono anche a livello di un solo nucleotide.

Per l'esperimento 2023 sono state ottenute 8.082.476 e 1.774.658 reads pulite appartenenti rispettivamente alle comunità batteriche (che comprendono anche microrganismi del regno degli Archaea) e fungine, pari dunque al 28% e 22% delle raw reads ottenute all'inizio; per l'esperimento del 2024 sono state ottenute 409.408 reads batteriche e 362.562 reads fungine pulite, rappresentative delle raw reads circa al 13% e 17%.

Dall'analisi di denoising ed identificazione tassonomica delle comunità batteriche e fungine è stato quindi ottenuto un output finale, ovvero una tabella riportante le abbondanze delle ASV. Questa tabella, definita ASV table, è costituita da righe che rappresentano le singole ASV e da colonne che rappresentano i campioni degli esperimenti: ogni cella presenterà dunque il numero di reads sequenziate per ogni ASV in un campione. Ogni ASV viene identificata nei sette principali livelli tassonomici (dal regno alla specie, come descritto nel paragrafo 6.5).

6.8 Risultati: Studio della diversità interna dei campioni (alfa-diversità) e della similarità tra campioni delle diverse tesi allo studio (beta-diversità)


I campioni di suolo, prelevati dai rispettivi siti aziendali, hanno consentito lo studio della variabilità microbica rispetto ai due differenti trattamenti ASD e MS (Figura 51).

L'analisi della diversità alfa fornisce indicazioni in merito alla distribuzione della biodiversità interna al campione, sia per quanto riguarda le comunità batteriche che fungine delle sei aziende analizzate nel corso dei due anni di sperimentazione. Nei grafici è possibile vedere per ogni azienda il risultato dei campioni prelevati dopo i trattamenti ASD e MS con due indici: il primo evidenzia la ricchezza (indice Observed), il secondo (indice Shannon), evidenzia l'uniformità della distribuzione della biodiversità.

L'alfa-diversità delle tesi allo studio è stata valutata attraverso il parametro della ricchezza con l'indice Observed e quello della diversità con l'indice Shannon, considerati confrontando i due trattamenti in ciascuna azienda.

Dall'osservazione di questi risultati nelle comunità batteriche e fungine, non sono state sempre emerse variazioni univoche negli indici di ricchezza e diversità nei due anni di sperimentazione (Fig. 51). In particolare, il trattamento con Metam sodio ha causato una riduzione statisticamente significativa nella ricchezza delle comunità batteriche dell'azienda M (anno 2023); un effetto analogo è stato osservato nell'indice Shannon delle comunità batteriche, in riferimento all'azienda P (anno 2024) (Figura 51A-C). Al contrario, nelle comunità fungine, il trattamento con Metam sodio ha causato un aumento significativo della ricchezza Shannon nelle aziende L e M; nell'azienda P, invece, si è osservata una riduzione dei valori di questo indice che non è risultata statisticamente significativa (Figura 51 E-G).

Figura 51: analisi di alfa-diversità (indici Observed e Shannon) delle comunità batteriche (A-D) e fungine (E-H) nel corso dei due anni di sperimentazione

La beta-diversità è un parametro ecologico che misura la differenza nella composizione delle specie microbiche tra due habitat. In questo caso, le specie microbiche sono rappresentate proprio dalle ASV ottenute dalle analisi bioinformatiche, mentre le differenze nella composizione microbica sono state valutate tra i due trattamenti.

I grafici illustrati di seguito evidenziano le differenze nella composizione delle comunità microbiche, dove i colori rappresentano i diversi trattamenti sperimentali. Per una maggiore comprensione di questi grafici, occorre precisare che essi sono basati su un'analisi statistica precisa, ovvero l'Analisi delle Coordinate Principali (abbreviata come PCoA, *Principal Coordinates Analysis*). Questo approccio statistico è una tecnica utile per visualizzare la similarità o dissimilarità tra campioni biologici in uno spazio bidimensionale, in cui: i) ogni punto nel grafico rappresenta un campione microbico; ii) la distanza tra i punti riflette il grado di similarità (più vicini sono due punti, più simili sono le comunità microbiche che rappresentano); iii) i colori distinti indicano gruppi di trattamento diversi, cioè se i punti di un colore formano gruppi compatti e separati dagli altri, si può dedurre che il trattamento ha avuto un effetto chiaro sulla composizione microbica.

Nel primo set di grafici (Figura 52A), tutti i campioni appartenenti alla stessa azienda, indipendentemente dal trattamento impiegato, risultano raggruppati. Questo suggerisce che

l'azienda di origine è il principale fattore influenzante la diversità batterica, più ancora del trattamento. Tuttavia, nei grafici successivi (Figura 52B-C-D), in cui ogni grafico è dedicato a una singola azienda, emerge chiaramente anche un effetto del trattamento sulla struttura delle comunità batteriche.

Osservando la posizione dei punti colorati, si nota che gli indicatori dello stesso colore tendono a raggrupparsi. I gruppi di ciascun colore si distinguono nettamente dagli altri, mostrando una differenziazione marcata tra i microbiomi dei diversi trattamenti. In relazione alle analisi svolte nel 2023, la separazione tra i trattamenti è molto più netta in ciascuna azienda (Figura 4B-C-D), mentre nel 2024 la distinzione rimane più marcata solo nell'azienda G. (Figura 52F-G-H), dove la differenziazione meno pronunciata.

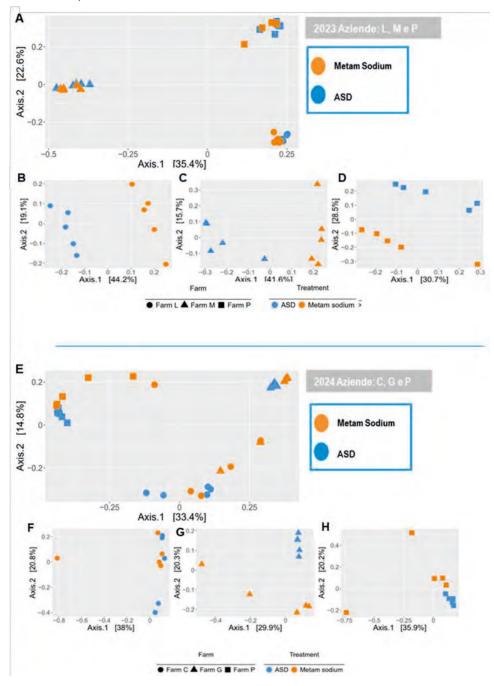


Figura 52: analisi delle beta-diversità delle comunità batteriche riferite all'anno 2023 e 2024

Una situazione analoga si osserva anche per quanto riguarda le comunità fungine: in riferimento all'anno 2023, il grafico della PCoA riportato nella Figura 53 mostra che, come per le comunità batteriche, le comunità fungine risultano significativamente diverse tra i trattamenti ASD e MS. Anche in questo caso, la separazione dei punti colorati nei grafici dedicati a ciascuna azienda (Figura 53 B-C-D), ha indicato chiaramente un effetto del trattamento sulla composizione del microbioma, con gruppi ben distinti in base al trattamento applicato. La separazione spaziale tra i punti appartenenti ai due trattamenti evidenzia un impatto marcato nella diversità delle comunità fungine, confermando così l'effetto dei trattamenti in ciascuna delle tre aziende. Riguardo le comunità fungine relative all'anno 2024, coerentemente con quanto osservato per le comunità batteriche nello stesso anno, all'interno delle stesse aziende sono state osservate delle differenze meno marcate tra i trattamenti, ad eccezione dell'azienda G in cui le comunità fungine si sono ben distinte (Figura 53G).

Figura 53: Analisi delle beta-diversità delle comunità fungine riferite all'anno 2023 e 2024.

In conclusione, i grafici PCoA illustrano la beta diversità mostrando chiaramente come il trattamento sperimentale abbia modificato la composizione microbica in maniera significativa, pur tenendo conto dell'influenza strutturale dell'azienda.

6.9 Risultati: Analisi della composizione microbica: studio dell'abbondanza relativa delle comunità batteriche e fungine nei due anni di sperimentazione

L'assegnazione dei microorganismi a specifici gruppi tassonomici ha permesso di calcolare, per ciascun campione in studio, l'abbondanza relativa dei principali taxa. I dati ottenuti sono stati visualizzati come medie per ogni anno di rilevazione, mediante grafici a barre sovrapposte. In questi grafici, ogni campione è standardizzato in percentuale, mentre la suddivisione cromatica rappresenta la percentuale relativa dei diversi gruppi tassonomici all'interno del microbioma.

Sebbene tutti i ranghi tassonomici offrano informazioni utili, si è scelto di concentrarsi sulle comunità batteriche e fungine ai livelli tassonomici del phylum (che offre una panoramica più globale della composizione microbica) e dell'ordine. La scelta di rappresentare le comunità microbiche al livello dell'ordine è stata preferita ad altri livelli tassonomici inferiori, come la famiglia e il genere, perché in grado di distinguere con un più che sufficiente dettaglio la composizione microbica in ciascun trattamento all'interno delle aziende.

I grafici in figura 54 mostrano i gruppi tassonomici a livello del phylum e dell'ordine delle tre aziende oggetto della sperimentazione nel 2023, permettendoci di osservare come varia l'abbondanza relativa di alcuni gruppi microbici in funzione del trattamento utilizzato.

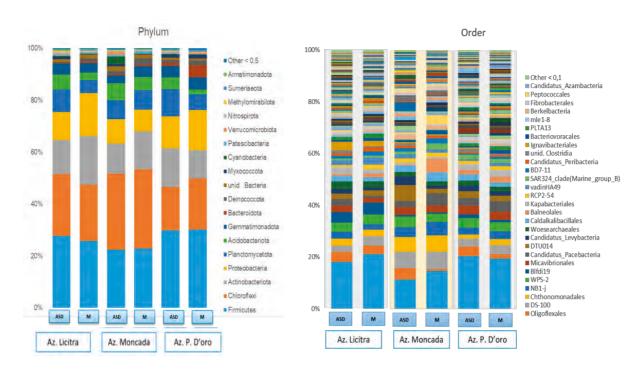
Al livello tassonomico del phylum, nell'esperimento del 2023 i phyla Firmicutes, Chloroflexi, Actinobacteriota, Proteobacteria e Planctomycetota hanno rappresentato complessivamente almeno il 75% della composizione batterica nei campioni analizzati. In tutt'e tre le aziende, i trattamenti hanno determinato effetti differenti sulla composizione delle comunità microbiche. In particolare, nel trattamento con ASD presso l'azienda L si è osservato un aumento nell'abbondanza relativa dei Firmicutes e dei Chloroflexi. Quest'ultimo phylum, tuttavia, è risultato più abbondante nei campioni trattati con Metam sodio nelle altre due aziende. Una riduzione dell'abbondanza relativa degli Actinobacteriota e dei Proteobacteria in seguito al trattamento con ASD è stata riscontrata in tutte e tre le aziende. Al contrario, i batteri appartenenti al phylum Planctomycetota sono risultati più abbondanti con ASD rispetto al trattamento con Metam sodio (Figura 54). Considerato l'anno 2024, gli stessi phyla sono risultati i più abbondanti, rappresentativi di almeno il 75% delle comunità batteriche. Complessivamente, gli effetti dei trattamenti sono stati riscontrati negli stessi phyla, con un aumento di Planctomycetota comune a tutte le tre aziende nel trattamento ASD (Figura 55) e un aumento della composizione batterica di Firmicutes nel trattamento con ASD solamente nell'azienda C.

Da questa analisi, al livello tassonomico dell'ordine, è stato possibile evidenziare 10 dei taxa più abbondanti che si sono arricchiti e che rappresentano circa il 55% delle comunità batteriche al livello tassonomico dell'ordine (Figura 54). Tra questi, Bacillales, Pirellulales, Thermomicrobiales, Paenibacillales, Caldilineales, Planctomycetales, Vicinamibacterales, Gemmatales, Tepidisphaerales. L'abbondanza relativa di questi ordini maggiormente rappresentativi non ha subito particolari variazioni tra i trattamenti, tra cui è emersa una differenza più accentuata tra i Bacillales, più abbondanti nel trattamento con ASD solo all'interno dell'azienda P, ma più ridotti rispetto al trattamento con Metam sodio nelle aziende C e G. In merito all'ASD, l'ordine batterico Tedipisphaerales è stato più abbondante in quest'ultima azienda. Fatta eccezione per Pirellulales e Tepidisphaerales, questi ordini batterici hanno costituito parte dei 10 taxa batterici più abbondanti nell'esperimento condotto nel 2024, unitamente a Rhizobiales e Propionibacteriales (Figura 55).

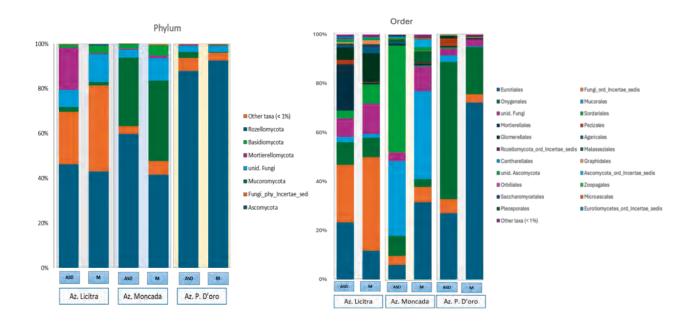
Per quanto riguarda le comunità fungine, è stato possibile osservare una composizione diversa in ciascuna azienda, anche in quelle descritte al livello del phylum, sia per quanto riguarda il 2023 che il 2024. Inoltre, all'interno di ciascuna azienda è stato possibile constatare differenze nelle

abbondanze relative tra i due trattamenti. In merito all'anno 2023, Ascomycota, Mucoromycota, Mortierellomycota e Basidiomycota sono stati i phyla più abbondanti dalla tassonomia nota; analogamente, anche gruppi fungini identificati fino al livello del regno (Fungi incertae sedis e unidentified Fungi) hanno mostrato un'abbondanza relativa molto elevata, soprattutto nell'azienda L (Figura 54). Quanto ai phyla tassonomicamente noti, Ascomycota è stato il più abbondante in tutte e tre le aziende, con un'abbondanza non inferiore al 40% in azienda L e M e particolarmente elevata, circa all'85%, nell'azienda P.

In ogni azienda, è stato possibile osservare differenze nelle abbondanze relative dei phyla a seguito dei due trattamenti. In azienda L, nei campioni sottoposti al trattamento con ASD, emerge una maggiore lieve abbondanza degli Ascomycota e più accentuata dei Mortierellomycota, mentre nell'azienda M risulta più evidente un aumento degli Ascomycota e secondariamente dei Mucoromycota. Ad accomunare entrambe le aziende nel trattamento con ASD è una riduzione dei Basidiomycota rispetto ai corrispettivi campioni nel trattamento con Metam sodio. In azienda P, l'altissima abbondanza relativa degli Ascomycota è risultata maggiore nei campioni sottoposti al Metam sodio: questo risultato si distingue da quanto osservato nelle precedenti aziende, nei cui campioni Ascomycota risulta più abbondante in ASD. Anche in questo caso, Mucoromycota si presenta a un'abbondanza relativa maggiore nel trattamento ASD rispetto a Metam sodio.


In merito al livello tassonomico dell'ordine, la composizione fungina è stata maggiormente rappresentata dai seguenti ordini tassonomici: Eurotiales, Onygenales, Mucorales, Sordariales, Mortierellales, Pezizales e Glomerellales (Figura 54). Ogni azienda ha mostrato una specifica composizione: all'interno di ogni azienda, sono state riscontrate delle variazioni nelle abbondanze relative di questi microorganismi tra i due trattamenti. Una variazione maggiore è stata riscontrata nelle aziende M e P, in cui l'abbondanza relativa rispettivamente dei Sordariales e degli Onygenales è risultata molto maggiore nel trattamento ASD rispetto a quello del Metam sodio (Figura 54). È comunque importante sottolineare che, anche in questo caso, tra i taxa fungini più abbondanti ve ne sono diversi dall'identificazione non nota, come quelli identificati fino al livello del phylum Ascomycota e del regno dei Funghi. Sebbene non si conosca ancora la loro identificazione tassonomica, possiamo ritenere plausibile che questi microorganismi svolgano un ruolo ecologico rilevante nei campioni in cui risultano particolarmente abbondanti.

In merito all'esperimento del 2024, al livello del phylum, l'abbondanza degli Ascomycota è stata elevatissima, tra l'80% e più del 95%, nei campioni delle tre aziende. Coerentemente con quanto osservato nell'esperimento dell'anno precedente, seppur con abbondanze relative più ridotte, i Mortierellomycota e Mucoromycota sono risultati tra i phyla più rappresentativi. Mortierellomycota è stato meno abbondante nei campioni relativi al trattamento con ASD nelle aziende C e G, al contrario di quanto osservato nell'azienda P in cui è risultato maggiore proprio in ASD rispetto al Metam sodio. Mucoromycota è stato osservato solo nelle aziende C e G con un'abbondanza maggiore in ASD solamente in quest'ultima azienda. La maggiore abbondanza di gruppi tassonomici fungini non identificati fino all'ordine è stata riscontrata in misura maggiore proprio in quest'ultimo anno di sperimentazione (Figura 56). Ulteriormente, anche in questo caso ogni azienda ha mostrato un profilo di abbondanze diverso e all'interno di ciascuna di essa si sono distinte le composizioni fungine tra i due trattamenti, in particolar modo all'interno dell'azienda C e G. Gli ordini più abbondanti, tassonomicamente noti, sono stati riscontrati nell'azienda G (Figura 56). In particolar modo, gli Hypocreales sono stati riscontrati ad pari all'incirca dell'80% nel trattamento un'abbondanza relativa ASD, Saccharomyecetales e i Wallemiales nel trattamento con Metam sodio. Seppur in misura minore, nell'azienda P il trattamento con ASD ha determinato un aumento dei funghi appartenenti all'ordine Glomerellales (Figura 56).


Complessivamente, dunque, abbiamo potuto osservare delle variazioni significative nella composizione microbica più rappresentativa non solo tra le aziende, ma anche tra i trattamenti all'interno di ogni sito aziendale nei due anni di sperimentazione. Queste variazioni sono state evidenti non solo al livello tassonomico dell'ordine, ma talvolta anche nel phylum, il più alto raggruppamento tassonomico dopo il regno tra i sette principali. Quest'ultimo aspetto ha pertanto confermato che il trattamento, oltre alle aziende, ha guidato profondamente la

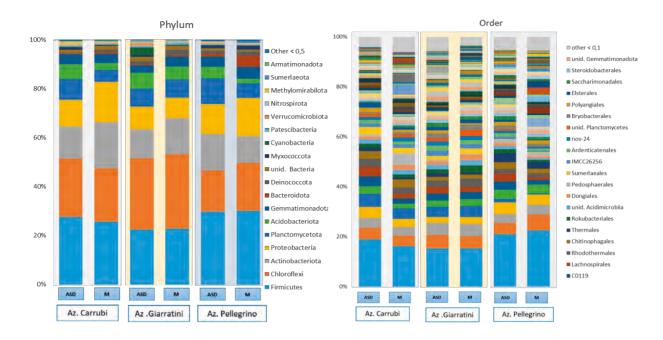
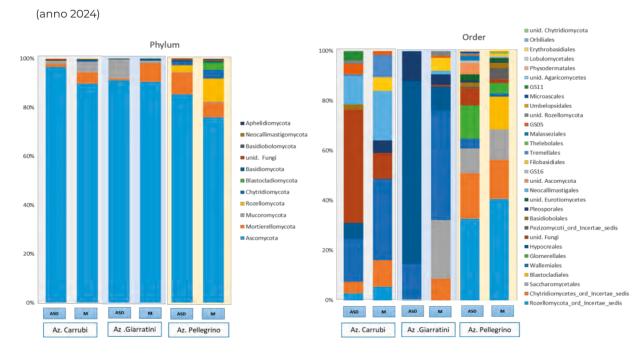
variazione delle abbondanze microbiche nei due anni. Inoltre, l'analisi delle abbondanze relative ha consentito di indagare maggiormente i gruppi tassonomici fungini più rappresentativi permettendoci di osservare delle differenze marcate anche tra i trattamenti di aziende in cui dalle analisi di beta diversità non emergevano delle evidenti distinzioni.

Figura 54: Analisi delle abbondanze relative delle comunità batteriche al livello tassonomico del phylum e ordine (anno 2023)

Figura 55: Analisi delle abbondanze relative delle comunità fungine al livello tassonomico del phylum e ordine (anno 2023)

6.10 Risultati: Studio dell'abbondanza differenziale delle comunità batteriche

Poiché l'effetto principale del trattamento dell'ASD è imputato alla variazione delle comunità batteriche un approfondimento è stato effettuato con lo studio dell'analisi differenziale finalizzata a identificare i gruppi tassonomici che si arricchiscono o si impoveriscono in risposta ai trattamenti applicati (Figura 57).

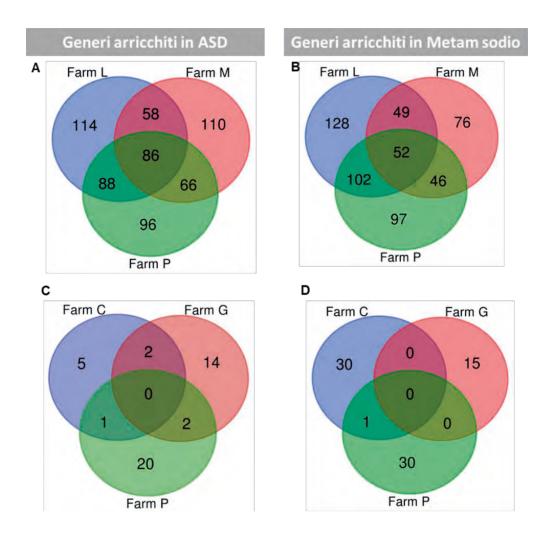

Figura 56: Analisi delle abbondanze relative delle comunità batteriche al livello tassonomico del phylum e ordine

Figura 57: Analisi delle abbondanze relative delle comunità fungine al livello tassonomico del phylum e ordine (anno 2024)

Analizzando le sei aziende incluse nello studio (L, M, P nel 2023; C, G, P nel 2024), si evidenzia che nel 2023 è stata osservata la maggiore abbondanza complessiva di taxa batterici arricchiti. In particolare, sono stati ottenuti 618 taxa batterici in totale arricchiti nel trattamento ASD; tra le tre aziende, 86 taxa erano in comune (circa il 14%), mentre i taxa specifici per azienda sono stati 114, 110 e 96 rispettivamente per le aziende L, M e P (Fig. 10A-B-C). Per il trattamento con Metamsodio, sono stati identificati 550 taxa arricchiti (impoveriti con ASD). Tra questi, 52 taxa (circa il 9%) sono risultati comuni alle tre aziende (Figura 58).

Figura 58: diagrammi di Venn delle abbondanze differenziali dei generi batterici arricchiti (A,B) nel 2023 e (C,D) nel 2024 in (A,C) ASD e (B,D) Metam sodio.

Allo scopo di evidenziare abbiamo approfondito lo studio dei taxa arricchiti in comune tra le aziende in relazione alla respirazione. Nel suolo sottoposto a ASD sono risultati arricchiti il 57% dei taxa con respirazione anaerobia (obbligata e facoltativa) mentre solo il 28% nel suolo trattato con MS. Nelle tabelle allegate è possibile vedere l'elenco dei taxa (Tabella 1 e 2).

Tabella 1: taxa arricchiti in ASD in comune tra le tre aziende 2023

Taxa arricchiti in ASD							
Phylum	Classe/Ordine	Famiglia/Genere	Respirazione				
Planctomycetota	Phycisphaerae	AKYG587 (Phycisphaeraceae)	Anaerobia				
Planctomycetota	Planctomycetes	Planctomicrobium (Rubinisphaeraceae)	Aerobia				
Planctomycetota	Pirellulales	Pirellula / Pir4_lineage	Aerobia				
Planctomycetota	BD7-11	*BD7-11* (non classificato)	Sconosciuta				
Planctomycetota	OM190	OM190 (non classificato)	Anaerobia fermentativa				
Planctomycetota	Tepidisphaerales	WD2101_soil_group	Microaerofila (suoli umidi)				
Proteobacteria	Alphaproteobacteria	Methylobacterium-Methylorubrum (Beijerin	(Aiacœlaia)obbligata (metanotrofi)				
Proteobacteria	Alphaproteobacteria	Nitrosomonas (Nitrosomonadaceae)	Aerobia obbligata (nitrificazione: NH₃ → NO₂⁻)				
Proteobacteria	Gammaproteobacteria	Legionella (Legionellaceae)	Aerobia				
Proteobacteria	Gammaproteobacteria	Aquicella (Diplorickettsiaceae)	Aerobia				
Proteobacteria	Gammaproteobacteria	HOC36 (non classificato)	Probabile aerobia				
Proteobacteria	Gammaproteobacteria	Xanthomonadales (Vulcaniibacterium)	Aerobia (ambienti termali)				
Chloroflexi	Anaerolineae	uncultured Anaerolineaceae	Anaerobia (fermentazione/riduzione solfati)				
Chloroflexi	Anaerolineae	Ardenticatenales (A4b)	Anaerobia (ossidazione composti aromatici)				
Chloroflexi	Chloroflexia	uncultured Roseiflexaceae	Fototrofa anaerobia (fotosintesi anossigenica)				
Acidobacteriota	Blastocatellia	*DS-100* / Subgroup_5	Aerobia/microaerofila (riduzione Fe ³⁺ in anaerobiosi)				
Acidobacteriota	Vicinamibacteria	uncultured Vicinamibacterales	Anaerobia (fermentazione)				
Acidobacteriota	Solibacterales	Candidatus Solibacter	Aerobia (suoli ossigenati)				
Firmicutes	Bacilli	Oceanobacillus / Psychrobacillus	Facoltativi (fermentano in assenza di O ₂)				
Firmicutes	Clostridia	Lachnospiraceae NK4A136	Anaerobia obbligata				
Firmicutes	Thermoanaerobacteria	SRB2	Anaerobia termofila (riduzione solfati)				
Bacteroidota	Bacteroidia	Terrimonas (Chitinophagaceae)	Aerobia (degradazione chitina)				
Bacteroidota	Kryptonia	BSV26	Anaerobia (ambienti estremi)				
Verrucomicrobiota	Verrucomicrobiae	Lacunisphaera (Opitutaceae)	Anaerobia (fermentazione)				
Verrucomicrobiota	Omnitrophia	Candidatus Omnitrophus	Anaerobia (riduzione zolfo/nitrati)				
Myxococcota	Myxococcia	uncultured Myxococcaceae	Aerobia obbligata				
Myxococcota	Polyangia	Sandaracinus / Nannocystis	Aerobia				
Nitrospirota		Nitrospira	Aerobia (nitrificazione: $NO_2^- \rightarrow NO_3^-$)				
Deinococcota		Meiothermus	Aerobia termofila (sorgenti calde)				
Patescibacteria		Dojkabacteria	Anaerobia				
Elusimicrobiota		Lineage_IIb	Anaerobia obbligata				

Tabella 2. taxa impoveriti in ASD (arricchiti in Metam-sodio) in comune tra le tre aziende 2023

Taxa impoveriti in ASD							
Phylum	Classe/Ordine	Famiglia/Genere	Respirazione				
Chloroflexi	Dehalococcoidia	SAR202_clade	Anaerobica (riduzione di composti organoalogenati, fermentazione)				
Chloroflexi	Dehalococcoidia	unid. Dehalococcoidia	Anaerobica (probabile riduzione di solventi clorurati)				
Chloroflexi	Chloroflexia	Nitrolancea (Thermomicrobiaceae)	Aerobica (ossidazione di nitrito a nitrato)				
Chloroflexi	Chloroflexia	Sphaerobacter	Aerobica termofila (degradazione di composti organici)				
Chloroflexi	Gitt-GS-136	*Gitt-GS-136*	Sconosciuta (probabile anaerobica, basata su ambienti anossici)				
Chloroflexi	unid. Chloroflexi	unid. Chloroflexi	Non determinata				
Actinobacteriota	Streptosporangiales	Thermobifida (Nocardiopsaceae)	Aerobica termofila (degradazione di cellulosa)				
Actinobacteriota	Streptosporangiales	Nocardiopsis	Aerobica				
Actinobacteriota	Micromonosporales	Micromonospora	Aerobica				
Actinobacteriota	Micromonosporales	Luedemannella	Aerobica				
Actinobacteriota	Solirubrobacterales	unid. Solirubrobacteraceae	Aerobica				
Actinobacteriota	Acidimicrobiia	uncultured Actinomarinales	Aerobica				
Actinobacteriota	Thermoleophilia	*67-14*	Aerobica				
Firmicutes	Dethiobacterales	Dethiobacter	Anaerobica (riduzione di zolfo/tiosolfato)				
Firmicutes	Clostridia	Cellulosilyticum (Lachnospiraceae)	Anaerobica (fermentazione di cellulosa)				
Firmicutes	Peptostreptococcales-Tissierellale	T epidimicrobium	Anaerobica termofila				
Firmicutes	Bacillales	Halobacillus	Aerobica alofila (ambienti salini)				
Firmicutes	Paenibacillales	Thermobacillus	Aerobica termofila (degradazione di emicellulosa)				
Firmicutes	Syntrophomonadales	unid. Syntrophomonadaceae	Anaerobica (sintrofia con batteri metanogeni)				
Proteobacteria	Rhizobiales	Pedomicrobium (Hyphomicrobiaceae)	Aerobica				
Proteobacteria	Gammaprote obacteria	JTB255_marine_benthic_group	Aerobica				
Proteobacteria	Ferrovibrionales	uncultured Ferrovibrionales	Anaerobica (riduzione di ferro)				
Planctomycetota	Phycisphaerales	uncultured Phycisphaeraceae	Anaerobica (riduzione di zolfo/nitrati)				
Planctomycetota	Planctomycetales	unid. Rubinisphaeraceae	Aerobica (degradazione di polisaccaridi)				
Bacteroidota	Rhodothermales	Rhodothermaceae	Aerobica termofila (ambienti ipersalini)				
Patescibacteria	Saccharimonadales	TM7 (S32)	Anaerobica (parassita metabolico, ridotta capacità respiratoria)				
Bdellovibrionota		Bdellovibrio	Aerobica				
Gemmatimonadota		Longimicrobiaceae	Aerobica				
Deinococcota		Truepera	Aerobica termofila				
Fibrobacterota		*BBMC-4*	Anaerobica				

Nel 2024, le comunità batteriche arricchite osservate sono state inferiori rispetto a quelle nel 2023. I generi totali arricchiti in ASD, infatti, sono stati 44 mentre in Metam-sodio sono stati 77 (Fig. 58C -D). Inoltre, in entrambi i trattamenti, non è stato osservato alcun taxa batterico in comune tra le aziende C, G e P. Questo risultato, in linea con quanto emerso dall'analisi della beta-diversità, rafforza l'ipotesi che ogni azienda abbia favorito la selezione di comunità batteriche specifiche, probabilmente influenzate da variabili locali ambientali o gestionali (Fig. 58).

L'analisi quindi è stata rilevata a livello di phylum. In particolare, considerando i taxa batterici arricchiti esclusivamente nelle tre aziende, si è osservata in tutt'e tre la predominanza di taxa appartenenti a uno o due phyla specifici. Considerando i taxa arricchiti in condizione del trattamento ASD, all'interno delle aziende G e P sono emersi rispettivamente generi batterici appartenenti al phylum dei Firmicutes e dei Chloroflexi. I Firmicutes, pur rappresentando un gruppo eterogeneo, includono numerosi taxa capaci di adattarsi a condizioni ambientali variabili. Tra i più rappresentativi vi sono i generi Bacillus e affini, noti per la loro capacità di formare endospore e per la tolleranza a stress ambientali, sebbene non tutti i Firmicutes condividano queste caratteristiche né siano necessariamente sporigeni o anaerobi. I Chloroflexi, anch'essi

metabolicamente versatili, comprendono sia microrganismi anaerobi obbligati o facoltativi (come Anaerolineae e Dehalococcoidia), sia aerobici e fototrofi anossigenici (come Chloroflexus).

6.11 Considerazioni risultati analisi del microbioma

Lo studio sulla Disinfestazione Anaerobica del Suolo (ASD) e il suo confronto con il fumigante chimico Metam-sodio (MS) ha rivelato modificazioni significative e specifiche nel microbioma tellurico. Queste conclusioni derivano da un'analisi metagenomica approfondita delle comunità batteriche e fungine in sei aziende serricole commerciali nell'arco di due anni.

- 1. Impatto sulla Diversità Alfa (Ricchezza e Uniformità):
 - o L'analisi della diversità alfa ha mostrato variazioni non sempre univoche negli indici di ricchezza (Observed) e diversità (Shannon) tra i due anni di sperimentazione per le comunità batteriche e fungine.
 - Tuttavia, il trattamento con Metam sodio ha spesso causato una riduzione significativa della ricchezza delle comunità batteriche (es. azienda M nel 2023 e azienda P nel 2024 per l'indice Shannon).
 - Per le comunità fungine, il Metam sodio ha mostrato un effetto più variabile, causando un aumento significativo della ricchezza Shannon in alcune aziende (L e M nel 2023), mentre in altre una riduzione non statisticamente significativa. Questo suggerisce un impatto differenziato del fumigante chimico sulle diverse componenti del microbioma fungino rispetto all'ASD.
- 2. Impatto sulla Diversità Beta (Composizione e Similarità tra Campioni):
 - o I grafici PCoA hanno dimostrato chiaramente che il trattamento sperimentale ha modificato la composizione microbica in maniera significativa.
 - Nel 2023, la separazione tra i trattamenti ASD e Metam-sodio è risultata molto più netta per le comunità batteriche e fungine in ciascuna azienda, indicando un impatto marcato dell'ASD sulla diversità delle comunità microbiche.
 - Nel 2024, questa distinzione è rimasta più marcata solo nell'azienda G, suggerendo che le differenze tra i trattamenti possono variare tra gli anni o le aziende.
 - È cruciale notare che l'azienda di origine è emersa come il principale fattore influenzante la diversità batterica, anche più del trattamento stesso, con i campioni della stessa azienda che tendevano a raggrupparsi indipendentemente dal trattamento. Ciò evidenzia l'importanza delle condizioni pedoclimatiche e gestionali specifiche di ogni sito.
- 3. Variazioni nelle Abbondanze Relative dei Taxa Microbici:
 - o Comunità Batteriche:
 - I phyla dominanti sono stati Firmicutes, Chloroflexi, Actinobacteriota, Proteobacteria e Planctomycetota, rappresentando oltre il 75% della composizione batterica.
 - Il trattamento ASD ha specificamente aumentato l'abbondanza relativa di Planctomycetota in tutte le aziende in entrambi gli anni (2023 e 2024). Questo phylum include microrganismi con diverse strategie metaboliche, alcuni dei quali anaerobi.
 - Si è osservata una riduzione degli Actinobacteriota e Proteobacteria con ASD in tutte e tre le aziende nel 2023, mentre altre variazioni (es. Firmicutes e Chloroflexi) erano più azienda-specifiche.
 - o Comunità Fungine:
 - Ascomycota, Mucoromycota, Mortierellomycota e Basidiomycota sono stati i phyla più abbondanti.
 - L'Ascomycota è risultato il phylum più abbondante in tutte e tre le aziende nel 2023. In generale, si sono osservate differenze nelle abbondanze relative dei phyla fungini a seguito dei due trattamenti all'interno di ciascuna

- azienda, sebbene con profili di risposta variabili (es. azienda L e M vs. azienda P per Ascomycota).
- Le analisi a livello di ordine hanno ulteriormente evidenziato queste variazioni significative nella composizione microbica, non solo tra le aziende ma anche tra i trattamenti all'interno di ogni sito aziendale.
- 4. Effetto sulle Abbondanze Differenziali (Comunità Batteriche):
 - Nel 2023, l'ASD ha arricchito un numero maggiore di taxa batterici (618) rispetto a quelli arricchiti con Metam-sodio (550), e una parte significativa di questi taxa arricchiti con ASD (57%) aveva una respirazione anaerobia (obbligata e facoltativa). Questo dato supporta la capacità dell'ASD di indurre condizioni anaerobiche che favoriscono specifici gruppi batterici.
 - o Al contrario, solo il 28% dei taxa arricchiti nel suolo trattato con Metam-sodio aveva respirazione anaerobia.
 - Nel 2024, sebbene il numero di generi arricchiti in ASD fosse inferiore rispetto a Metam-sodio, è stata rafforzata l'ipotesi che ogni azienda favorisca la selezione di comunità batteriche specifiche, probabilmente influenzate da variabili locali ambientali o gestionali, dato che non è stato osservato alcun taxa batterico in comune tra le aziende per lo stesso trattamento. Tra i taxa arricchiti in ASD in questo anno, spiccano generi di Firmicutes (come *Bacillus*, adattabili a condizioni variabili) e Chloroflexi (con microrganismi sia anaerobi che aerobici).

In sintesi, l'approccio di disinfestazione anaerobica del suolo (ASD) non solo altera profondamente la composizione e la diversità del microbioma tellurico, favorendo microrganismi anaerobici, ma lo fa in modo distinto rispetto ai fumiganti chimici. Le modificazioni indotte dall'ASD sono significative e contribuiscono a un riequilibrio del suolo che può potenzialmente sopprimere i patogeni e migliorare la salute del suolo attraverso meccanismi che coinvolgono la produzione di composti antimicrobici, la creazione di condizioni anaerobiche letali e l'antagonismo microbico. La variabilità osservata tra le diverse aziende sottolinea, inoltre, l'importanza di considerare le specificità del sito nella gestione del suolo.

7 Sviluppo di un protocollo per valorizzare la biodiversità

L'attività condotta in capo alla presente azione è stata implementata da SATA e ha riguardato la creazione di un disciplinare tecnico redatto sulla base del Protocollo Biodiversity Friend [®] che potrà essere adottato dalle aziende aderenti al progetto MAPEI-ASD poter ottenere la suddetta certificazione volontaria vertente su aspetti legati alla biodiversità aziendale il cui ambito di applicazione è l'intera azienda agricola richiedente quindi non solo gli appezzamenti produttivi ma anche tutte le aree che possono avere influenza sui requisiti dello Standard stesso quali: tare aziendali, edifici, strutture e locali di confezionamento.

La conformità è valutata da controlli effettuati da organismi di certificazione autorizzati mediante proprio personale ispettivo che misurano almeno una volta l'anno il grado di conformità dell'azienda con le pratiche ambientali e sociali indicate nei criteri dello standard.

Per la valutazione della conformità allo standard si applica un sistema a punteggio, il quale è dato dalla sommatoria dei punteggi assegnati a ciascuna azione, ispirata alla Biodiversity Friend® Declaration che le aziende sottoscrivono inizialmente.

All'azienda viene richiesto un miglioramento continuo, anche minimo in termini di punteggio.

Questi punti potranno essere incrementati con nuove azioni da implementare, da scegliere tra quelli presenti nella check-list.

La certificazione si basa sulla valutazione di dieci azioni quali:

- 1. Modello colturale sostenibile
- 2. Tutela della fertilità dei suoli

- 3. Gestione razionale della risorsa acqua
- 4. Tutela di siepi, boschi, prati, specie nettarifere e formazioni naturaliformi
- 5. Tutela della biodiversità agraria e strutturale
- 6. Risparmio energetico e uso di fonti rinnovabili
- 7. Tutela del territorio e del paesaggio rurale
- 8. Sostenibilità sociale
- 9. Sostenibilità economica
- 10. Qualità del suolo, dell'acqua e dell'aria

Per ottenere la certificazione alla prima verifica ispettiva, bisogna aver raggiunto un punteggio minimo pari a 60/100.

Nelle verifiche successive di sorveglianza, per mantenere la certificazione, il richiedente deve aver conseguito un miglioramento in termini di punteggio di almeno un punto all'anno.

Non sono richiesti ulteriori interventi migliorativi al raggiungimento di un punteggio di 80/100 (ottanta/centesimi).

Nel caso di mancato raggiungimento del punteggio minimo alla prima verifica ispettiva da parte del soggetto richiedente, questo può eventualmente richiedere un tempo di adeguamento, non superiore a 60 giorni, al termine del quale dovrà essere soggetto a nu ova verifica ispettiva.

Viene applicata una sospensione dei soggetti abilitati, quando:

- si riscontra il mancato soddisfacimento, nelle verifiche successive alla prima, dei requisiti tali da raggiungere il punteggio minimo di 60/100;
- le azioni correttive non vengono gestite entro i tempi e secondo le modalità concordate.

In caso di gravi inadempienze da parte del soggetto richiedente, è prevista la revoca della certificazione e quindi la possibilità dell'uso del marchio.

La revoca viene applicata quando il soggetto richiedente a cui è già stata applicata la sospensione, non mette in atto entro i tempi stabiliti le azioni correttive concordate.

Il Disciplinare è stato redatto sulla base del protocollo Biodiversity Friend® a cui le aziende potranno rivolgersi per ottenerne la certificazione su base volontaria.

Per ulteriori dettagli si rimanda al Disciplinare Biodiversità.

8 Divulgazione dei risultati

Con la presente azione sono state effettuate la dimostrazione, la disseminazione e la diffusione dei risultati dell'innovazione.

La realizzazione del piano di comunicazione è un'attività di tipo verticale e ha interessato il progetto sin don il convegno di presentazione del 15/05/2024, una giornata di campo fino alla conclusione delle attività con convegno finale del 27/05/2025.

Output dell'azione:

- Sito web dedicato https://biopathogens.com./it/
- > Piano di comunicazione
- > Convegni e giornate dimostrative
- ▶ Roll-up, brochure, locandine
- Manuale tecnico sull'innovazione del progetto
- Articoli, servizi radiotelevisivi

- o Scicli, l'orticoltura intensiva e le tecniche innovative rispettose della flora microbica (Il Giornale Ibleo del 14/05/2024 anno XV n. 4 · luglio·agosto 2024 · bimestrale, ISSN 2039-8212);
- Scicli, il progetto "Bio Pathogens" illustrato in un convegno a palazzo Spadaro (La Sicilia del 18/05/2024 anno XV n. 4 · luglio · agosto 2024 · bimestrale, ISSN 2039-8212);
- o https://terra.regione.sicilia.it/agricoltura-protetta-in-sicilia-il-20-della-produzione-nazionale-nuove-sfide-fitopatologiche/
- o Ragusa, smaltire il modo corretto le biomasse di scarto derivanti dalla coltivazione di pomodoro: un progetto per evidenziare come si fa (La Sicilia del 26/05/2025 anno XV n. 4 · luglio · agosto 2024 · bimestrale, ISSN 2039-8212);

Pubblicazione dati su rete PEI AGRI e RRN

Attività realizzate:

Sono stati previsti e realizzati due convegni divulgativi e una giornata dimostrativa di campo in occasione delle quali sono stati illustrati i risultati del progetto durante il suo avanzamento. Il piano di divulgazione ha previsto:

- un convegno di presentazione del progetto e dei primi risultati ottenuti fatto presso il palazzo Spadaro a Scicli in data 15 maggio 2024 in cui sono stata illustrata la gestione sostenibile dei patogeni tellurici in ambiente protetto, la disinfestazione biologica del terreno e la gestione integrata dei nematodi e i primi risultati delle attività (Figura 59).
- partecipazione all'Innovation Day Sicilia 2024 tenutosi presso l'Aula Magna del Polo Bio scientifico del Dipartimento di Agricoltura, Alimentazione e Ambiente dell'Università di Catania in data 30 maggio 2024 (Figura 60).
- una giornata di campo fatta in data 13 dicembre 2024 presso le aziende partner Ortomoncada S.S. e TO.FI S.S dove è stato possibile visionare i cumuli di compost ottenuti da piante e frutti di pomodoro e una prova di coltivazione di pomodoro su parcelloni sottoposti a disinfestazione biologica del terreno (ASD) e chimica (MS) (Figura 61).
- Convegno finale di presentazione dei risultati tenutosi presso la sede dell'Ordine dei Dottori Agronomi e Forestali della Provincia di Ragusa in data 27 maggio 2025 (Figura 6 2).

Figura 59: convegno di presentazione progetto palazzo Spadaro Scicli (RG)

Figura 60: Innovation Day presso UNICT, Prof. Giancarlo Polizzi, Dott. Agr.mo Antonino Azzaro e Dott. Agr.mo Rodolfo Occhipinti.

Figura 61: giornata di campo.

Figura 62: Gruppo di Lavoro Bio Phatogens presentazione risultati convegno finale

I convegni sono stati presentati anche presso i media (TV e stampa locale) e hanno visto, altresì, la partecipazione dei partner del progetto e di numerosi operatori del settore. La disseminazione dei risultati continua attraverso il sito internet i social, articoli sulla stampa, e servizi radiotelevisivi.

9 Conclusioni e prospettive future

Il progetto, denominato "Messa a punto e impiego della disinfestazione biologica del terreno per la gestione ecosostenibile dei patogeni tellurici del pomodoro" (MAPEI-ASD), è stato sviluppato in risposta alla crescente necessità di alternative sostenibili alla fumigazione chimica dei suoli in Sicilia. L'obiettivo principale è stato valutare l'efficacia della disinfestazione anaerobica del suolo (ASD) come metodo per contenere i patogeni tellurici e migliorare la salute del suolo.

I risultati delle attività di sperimentazione condotte presso diverse aziende partner hanno dimostrato che la tecnica ASD rappresenta una valida e promettente alternativa alla fumigazione chimica con Metam-sodio (MS). Nelle prove effettuate, le combinazioni di ASD e piante innestate hanno spesso ottenuto rese in peso paragonabili o superiori a quelle dei trattamenti chimici. L'analisi del microbioma ha confermato che il trattamento ASD modifica significativamente la composizione microbica del suolo, favorendo microrganismi anaerobici e contribuendo alla soppressione dei patogeni.

Oltre ai benefici agronomici, il progetto ha evidenziato notevoli vantaggi economici e ambientali. L'adozione dell'ASD può contribuire a una riduzione del 100% dell'uso dei fumiganti chimici, con un risparmio stimato di circa 1.000 €/1000 m² per anno per gli agricoltori. Questo non solo preserva la qualità del suolo e delle risorse idriche, ma produce anche un prodotto più salubre e commercialmente più valorizzato.

In conclusione, l'innovazione introdotta dal progetto ha dimostrato che la disinfestazione anaerobica del suolo è una strategia efficace e sostenibile che risponde sia alle esigenze di tutela ambientale che alle necessità economiche del settore agricolo siciliano. Le prospettive future si concentrano sull'ottimizzazione e sulla diffusione di questo protocollo, tenendo conto delle specificità locali, per garantire una gestione del suolo che valorizzi la biodiversità e protegga le colture in modo duraturo. A tal fine, è fondamentale continuare la ricerca per studiare l'impatto a lungo termine di tali pratiche sulla biodiversità del suolo e sulla sua resilienza, al fine di migliorare ulteriormente il protocollo.

SATA SRL

Dott. Agr.mo Rodolfo Occhipinti Università degli Studi di Catania Prof. Giancarlo Polizzi

Studio PROSEA

Dott. Agr.mo Gaetano Alessandro Guarino

NOTE		

PARTNER

COLLE D'ORO BIO - S.S. AGRICOLA

SOCIETÀ AGRICOLA ORTOMONCADA - S.S. DI MONCADA ROSARIO & C

SOCIETÀ AGRICOLA F.LLI LICITRA S.R.L.

ECONATURA S.S. AGRICOLA

MALLIA EMANUELE

SOCIETÀ AGRICOLA I DUE CARRUBBI S.S.

AZIENDA AGRICOLA PELLEGRINO IGNAZIO

AZIENDA AGRICOLA IL POMO D'ORO

DI CETTINA E ROSSANA CANNATA S.S.

SOCIETÀ AGRICOLA SEMPLICE TO.FI. S.S.

ASSOCIAZIONE TRA PRODUTTORI "IL VIVAIO"

MONCADA SOCIETÀ AGRICOLA COOP

PRO.SE.A. S.R.L.

ANALISI CHIMICHE LAB CENTER SICILIA S.R.L.S.

UNIVERSITÀ DEGLI STUDI DI CATANIA

CAPOFILA DEL PROGETTO

